VITEEE 2014 Previous Year Mathematics Question Paper With Answer Key

Solved Paper-2014

VIT

Engineering Entrance Exam

Mathematics

1. If the vertices of a triangle are A(0, 4, 1), B(2, 3, −1) and C(4, 5, 0), then the orthocenter of ∆ABC, is

(a)   (4, 5, 0)

(b)   (2, 3, −1)

(c)   (−2, 3, −1)

(d)   (2, 0, 2)

Ans: (b)

2. The equation of normal to the curve y (1 + x)y + sin−1 (sin2x) at x = 0 is

(a)   x + y = 1

(b)   x – y = 1

(c)   x + y = −1

(d)   x – y = −1

Ans: (a)

3. The value of c from the Lagrange’s mean value theorem for which  in [1, 5] is

(a)   5

(b)   1

(c)   √15

(d)   None of these

Ans: (c)

4. If  then A ∙ (adj A) is equal to

(a)   A

(b)   |A|

(c)   A| ∙ I

(d)   None of these

Ans: (c)

5. If there is an error of k% in measuring the edge of a cube, then the per cent error in estimating its volume is

(a)   k

(b)   3k

(c)   k/3

(d)   None of these

Ans: (b)

6. If the system of equations x + ky – z = 0, 3x – ky – z = 0 and x – 3y + z = 0, has non-zero solution, then k is equal to

(a)   −1

(b)   0

(c)   1

(d)   2

Ans: (c)

7. If the points (1, 2, 3) and (2, −1, 0) lie on the opposite sides of the plane 2x + 3y – 2z = k, then

(a)   k < 1

(b)   k > 2

(c)   k < 1 or k > 2

(d)   1 < k < 2

Ans: (d)

8. If  then is equal to

(a)   1/4

(b)   1/2

(c)   0

(d)   −1/4

Ans: (d)

9. Let f ′(x), be differentiable ∀ If f(1) = −2 and f′(x) ≥ 2 ∀ x ∈ [1, 6], then

(a)   f(6) < 8

(b)   f(6) ≥ 8

(c)   f(6) ≥ 5

(d)   f(6) ≤ 5

Ans: (b)

10. If then the value of  is

(a)   1

(b)   0

(c)   2

(d)   None of these

Ans: (b)

11. Two lines  and  intersect at a point, if k is equal to

(a)   2/9

(b)   1/2

(c)   9/2

(d)   1/6

Ans: (c)

12. The minimum value of  is

(a)   e

(b)   1/e

(c) e2   

(d) e3 

Ans: (a)

13. The triangle formed by the tangent to the curve f(x) = x2 + bx – b at the point (1, 1) and the coordinate axes lies in the first quadrant. If its area is 2, then the value of b is

(a)   −1

(b)   3

(c)   −3

(d)   1

Ans: (c)

14. The statement (p ⇒ q) ⇔ (~p ⋀ q) is a

(a)   tautology

(b)   contradiction

(c)   Neither (a) nor (b)

(d)   None of these

Ans: (c)

15. If  then x2 + y2 is equal to

(a)   3x – 4

(b)   4x – 3

(c)   4x + 3

(d)   None of these

Ans: (b)

16. The negation of (~p ⋀ q) ⋁ (p ⋀~ q) is

(a)   (p ⋁ ~q) ⋁ (~p⋁q)

(b)   (p ⋁ ~q) ⋀ (~p ⋁ q)

(c)   (p ⋀ ~q) ⋀ (~p ⋁ q)

(d)   (p ⋀ ~q) ⋀ (p ⋁ ~q)

Ans: (b)

17. The normals at three points P, Q and R of the parabola = y2 = 4ax meet at (h, k). The centroid of the ∆PQR lies on

(a)   x = 0

(b)   y = 0

(c)   x = −a

(d)   y = a

Ans: (b)

18. The minimum area of the triangle formed by any tangent to the ellipse  with the coordinate axes is

(a)    

(b)    

(c)    

(d)     

Ans: (c)

19. If the line lx + my – n = 0 will be a normal to the hyperbola, then  where k is equal to

(a)   n

(b) n2 

(c) n3    

(d)  None of these

Ans: (b)

20. If cos α + i sin α, b = cos β + i sin β, c = cos γ + i sin γ and  then cos(β – γ) + cos(γ – α) + cos(α – β) is equal to

(a)   3/2

(b)   −3/2

(c)   0

(d)   1

Ans: (d)

21. If |z + 4| ≤ 3, then the greatest and the least value of |z + 1| are

(a)   −1, 6

(b)   6, 0

(c)   6, 3

(d)  None of these

Ans: (b)

22. The angle between lines joining the origin to the point of intersection of the line √3x + y = 2 and the curve y2 – x2 = 4 is

(a)   

(b)   π/6

(c)   

(d)   π/2

Ans: (c)

23. If the area of the triangle on the complex plane formed by the points z, z + iz and iz is 200, then the value of 3|z| must be equal to

(a)   20

(b)   40

(c)   60

(d)   80

Ans: (c)

24. Equation of the chord of the hyperbola 25x2 – 16y2 = 400 which is bisected at the point (6, 2), is

(a)   6x – 7y = 418

(b)   75x – 16y = 418

(c)   25x – 4y = 400

(d)   None of these

Ans: (b)

25. If a plane meets the coordinates axes at A, B and C such that the centroid of the triangle is (1, 2, 4), then the equation of the plane is

(a)   x + 2y + 4z = 12

(b)   4x + 2y + z = 12

(c)   x + 2y + 4z = 3

(d)   4x + 2y + z = 3

Ans: (b)

26. The volume of the tetrahedron include between the plane 3x + 4y – 5z – 60 = 0 and the coordinate planes is

(a)   60

(b)   600

(c)   720

(d)   400

Ans: (b)

27. is equal to

(a)   0

(b)   4

(c)   8

(d)   1

Ans: (b)

28. The value of  where [∙] is the greatest integer function, is

(a)   2 – √2

(b)   2 + √2

(c)   √2 – 1

(d)   √2 – 2

Ans: (c)

29. If  then the expression for l(m, n) in terms of l(m + 1, n+1) is

(a)    

(b)    

(c)    

(d)    

Ans: (a)

30. The area in the first quadrant between x2 + y2 = π2 and y = sin x is

(a)    

(b)     

(c)     

(d)    

Ans: (a)

31. The area bounded y = xe|x| and lines |x| = 1, y = 0 is

(a)   4 sq units

(b)   6 sq units

(c)   1 sq unit

(d)   2 sq units

Ans: (d)

32. The solution of  satisfying y(1) = 0 is given by

(a)   hyperbola

(b)   circle

(c)   ellipse

(d)   parabola

Ans: (a)

33. If  then f(xy) is equal to

(a)    

(b)    

(c)   

(d)    

Ans: (a)

34. The differential equation of the rectangular hyperbola, where axes are the asymptotes of the hyperbola, is

(a)     

(b)    

(c)    

(d)  

 

Ans: (b)

35. The length of longer diagonal of the parallelogram constructed on 5a + 2b and a – 3b, if it is given that |a| = 2√2, |b| = 3 and the angle between a and b is π/4, is

(a)   15

(b)   √113

(c)   √593

(d)   √369

Ans: (c)

36. If r = αb × c + βc × a + γa × b and [a b c] = 1, then α + β + γ is equal to

(a)   r ∙ [b × c + c × a + a × b]

(b)    

(c)   2r ∙ (a + b + c)

(d)   4

Ans: (b)

37. If a, b, c are three non-coplanar vectors and p , q, r are reciprocal vectors, then (la + mb + nc) ∙ (lp + mq + nr) is equal to

(a)   l + m +n

(b)    

(c)     

(d)   None of these

Ans: (c)

38. If the integers m and n are chosen at random from 1 to 100, then the probability that a number of the form 7n + 7m is divisible by 5, equals to

(a)   1/4

(b)   1/2

(c)   1/8

(d)   1/3

Ans: (a)

39. Let X denote the sum of the numbers obtained when two fair dice are rolled. The variance and standard deviation of X are

(a)    

(b)    

(c)    

(d)  

  

Ans: (b)

40. A four-digit number is formed by the digits 1, 2, 3, 4 with no repetition. The probability that the number is odd, is

(a)   zero

(b)   1/3

(c)   1/4

(d)   None of these

Ans: (d)

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur