LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.Sc. DEGREE EXAMINATION – COMPUTER SCIENCE
|
THIRD SEMESTER – APRIL 2008
CS 3204 / 3201/ 4200 – STATISTICAL METHODS
Date : 05/05/2008 Dept. No. Max. : 100 Marks
Time : 1:00 – 4:00
PART A (Answer ALL questions) 10 ´ 2 = 20
- Find the simple mean and weighted arithmetic mean of the first ‘n’ natural numbers,
the weights being the corresponding numbers.
- The first two moments of distribution about the value 4 of the variable are -1.5 & 17. Find μ2.
- Write any two properties of regression coefficient.
- Can Y = 5 + 2.8 X & X = 3 – 0.5 Y be the estimated regression equations of Y on X and X on Y respectively.
- If , then prove that .
- Two coins are tossed simultaneously. What is the probability of getting (i) a tail (ii) atmost two tails
- Let X be a random variable with probability distribution.
X | -1 | 2 | 3 |
P(X=x) | 1/6 | 1/2 | 1/3 |
Find E(X).
- Let X be a continous random variable with probability density function given by
Find the constant k.
- Prove that .
- Define Binomial distribution.
PART B (Answer ALL questions) 5 ´ 8 = 40
- (a). An incomplete frequency distribution is given as follows:
Variable | Frequency | Variable | Frequency |
10 – 20 | 12 | 50 – 60 | ? |
20 – 30 | 30 | 60 – 70 | 25 |
30 – 40 | ? | 70 – 80 | 18 |
40 – 50 | 65 | Total | 229 |
Given that the mean value is 46. Determine the missing frequencies using median formula.
(OR)
(b). For a group of 200 candidates the mean and standard deviation of scores were found to be 40 and 15 respectively. Later it was discovered that the scores 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and standard deviation corresponding to the corrected figures.
- (a). Two sample polls of votes for two candidates A and B for a public office are taken, one from among the residents of rural areas. The results are given in adjoining table. Examine whether the nature of the area is related to voting preference in this election
Votes for | |||
Area | A | B | Total |
Rural | 620 | 380 | 1000 |
Urban | 550 | 450 | 1000 |
Total | 1170 | 830 | 2000 |
(χ 2 0.05 for 1, 3, 4, 5 d.f are 3.841, 7.815, 9.485, 11.07 respectively).
(OR)
(b). Obtain the equations of two lines of regression for the following data. Also obtain the estimated of X for Y = 70.
X: 65 66 67 67 68 69 70 72
Y: 67 68 65 68 72 72 69 71
- (a). A and B throw alternatively with a pair of balanced dice. A wins if he throws a sum of six points before B throws a sum of seven points, while B wins if he throws a sum of seven points before A throws a sum of six points. If A begins the game, show that this probability of winning is 30/61.
(OR)
(b) State and prove Baye’s theorem.
- (a). If X and Y are two random variables having joined density function
Find (i)
(ii)
(iii)
(OR)
(b). A random variable X is distributed at random between the values 0 and 1 so that
its probability density function is , where k is a constant. Find
the value of k, find its mean and variance.
- (a). (i) Find the mean and variance of Uniform distribution and (5+3)
(ii) If X is Uniform distributed with mean 1 and variance 4/3, then find P (X < 0).
(OR)
(b). Find the moment generating function of the exponential distribution and hence
find its mean and variance.
PART C (Answer ANY TWO questions) 2 ´ 20 = 40
- (a) A number of particular articles have been classified according to their weights. After drying for 2weeks the same articles have been again been weighted &similarly classified. It is known that the median weight in the first weighing was 20.83 gm, while in the second weighing it was 17.35 gm. Some frequencies a and b in the first weighing and x and y in the second are missing. It is known that a = x/3 and b = y/2. Find the values of the missing frequencies.
Frequencies for weighing | Frequencies for weighing | ||||
Class | I | II | Class | I | II |
0 – 5 | a | x | 15 – 20 | 52 | 50 |
5 – 10 | b | y | 20 – 25 | 75 | 30 |
10 – 15 | 11 | 40 | 25 – 30 | 22 | 28 |
(b). A sample analysis of examination results of 200 MBA ‘s was made .It was found that 46 students had failed, 68 secured III division, 62 secured II division , and the rest were placed in I division. Are these figures commensurate with a general examination result which is in the ratio 4:3:2:1 for various categories respectively?
(χ2 0.05 for 3, 4, 5 d.f are 7.815, 9.485, 11.07). (10+10)
- (a) State and prove addition theorem of probability.
(b) In a bolt factory machines A, B, and C manufacture respectively 25%, 35% and
40% of the total. Of their output 5, 4, 2 percent respectively are defective bolts. A
bolt is drawn at random from the product and is found to be defective. What are
the probabilities that it was manufactured by machines (i) A, (ii) B and (iii) C?
(8+12)
- (i) Two random variables X and Y have the following joint probability density function:
Find (a) the constant k.
(b) Marginal density functions of X and Y.
(c) Conditional density functions and (d) Var (X), Var (Y), Cov (X, Y).
(ii) Find the Moment Generating Function of Poisson distribution and hence find the mean and variance. (12+8)
Latest Govt Job & Exam Updates: