Loyola College B.Sc. Mathematics April 2012 Numerical Methods Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034B.Sc. DEGREE EXAMINATION – MATHEMATICSSIXTH SEMESTER – APRIL 2012MT 6605 – NUMERICAL METHODS
Date : 20-04-2012 Dept. No.         Max. : 100 Marks                 Time : 1:00 – 4:00
PART – A Answer ALL questions: (10 X 2 = 20 marks)
1. Explain Cramer’s rule.2. Distinguish between Gauss Elimination and Gauss Seidel methods.3. State the condition for convergence in Newton Raphson method.4. What do you mean by transcendental equation?5. Write Newton forward interpolation formula.6. Write any two properties of divided differences.7. Write Stirling’s formula using central difference notation.8. Write the derivatives using Newton’s forward difference formula.9. Define numerical integration.10. Write Simpson’s 1/3rd and 3/8th rule.
PART – B
Answer any FIVE questions: (5 X 8 = 40 marks)
11. Solve by Gauss elimination method: 12. Find the real root of  correct to three significant figures using Regula falsi method.13. Write a C program to  interpolate using Newton’s forward interpolation formula.14. Use Lagrange’s formula to find the value of y at x = 6 from the following data: x = 3, 7, 9, 10 and the corresponding value of y = 168, 120, 72, 63.15. Using the following data, find f’(5) by Newton’s divided difference formula:             : 0 2 3 4 7 9                   : 4 26 58 112 466 92216. Derive Laplace Everett’s formula.17. Apply Simpson’s rule to evaluate  to two decimal places by dividing the range into 4 equal parts.18. Solve  with the initial condition x = 0, y = 0 using Euler’s modified formula.

PART – C
Answer any TWO questions:                (2 X 20 = 40 marks)
19. (a)  Solve by Gauss Seidel method:
(b)  Find by Newton’s method the root of the equation  , which is approximately 2, correct        to three places of decimals.
20. (a) Given   : 0 1 2 5             : 2 3 12 14    find the cubic function of x using Newton’s          divided difference formula.
(b) Using Newton’s formula find the value of f(1.5) from the following data: :    0    1    2    3   4        : 858.3 869.6 880.9 892.3 903.6
21. (a) Use Stirling’s formula to find f(1.63) given  : 1.50    1.60      1.70        1.80       1.90       : 17.609   20.412   23.045   25.527    27.875            (b)Given  X: 0 4 8 12Y: 143 158 177 199 calculate  y5 by Bessel’s formula.
22. (a) Apply the fourth order Runge–Kutta method, to find an approximate value of   when   = 0.2      given that            (b) Write a C program to find the value of  using Simson’s 1/3 rule.

 

 

Go To Main page

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur