Loyola College B.A. Economics Nov 2006 Resource Management Techniques Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034      B.A. DEGREE EXAMINATION – ECONOMICS

AB 03

THIRD SEMESTER – NOV 2006

        ST 3100 – RESOURCE MANAGEMENT TECHNIQUES

(Also equivalent to STA 100)

 

 

Date & Time : 28-10-2006/9.00-12.00      Dept. No.                                                       Max. : 100 Marks

 

 

PART – A

Answer all questions.                                                                 (10 x 2 = 20 Marks)

 

  1. Define slack and surplus variables.
  2. Explain linear programming problem.
  3. When do you say that a transportation problem is unbalanced? How to make it balanced?
  4. Express a transportation problem as a linear programming problem.
  5. What is the objective of a sequencing problem?
  6. Write any two uses of an assignment problem.
  7. State any two differences between CPM and PERT.
  8. Define: a) Network             b) Activity
  9. What are the components of a cost function in an inventory model?
  10. Define: i) Optimistic time            ii) Pessimistic Time

 

 

PART – B

Answer any Five questions.                                                       (5 x 8 = 40 Marks)

 

  1. A firm manufacturers two products A and B on which the profit earned per unit are Rs.3 and Rs.4 respectively. Each product is processed on two machines M1 and M2 product A requires one minute of processing time on M1 and 2 minutes on M2 while B requires one minute on M1 and one minute on M2.  Machine M1 is available for not more them 7 hours and 30 minutes, while machine M2 is available for 10 hours during any working day.  Formulate the problem as a linear programming problem.
  2. Find all the basic solutions to the following system of linear equations:

x1 + 2x2 + x3  =  4

2x1 + x2 + 5x3  =  5

 

  1. Obtain the initial basic feasible solution for the following transportation problem using north-west corner method.

D1        D2        D3        D4        D5        D6    Supply

 

O1        6         4          8         4          9         6         4

O2        6         7          13        6          8         12        5

O3        3         9          4         5          9         13        3

O4        10        7          11        6          11        10        9

Demand          4         4          5          3          2         3

 

 

 

  1. Four professors are capable of teaching any one of 4 different courses. Class preparation time in hours for different topics varies from professor to professor and is given in the table below.  Each professor is assigned only one course.  Determine an assignment schedule so as to minimize the total course preparation time for all courses.

 

Professor       Subject 1          Subject 2         Subject 3         Subject 4

A                     2                    10                     9                     7

B                     15                    4                      14                    8

C                     13                   14                     16                    11

D                     4                    15                     13                    9

 

  1. Determine the optimal sequences of jobs that minimizes the total elapsed

time based on the following processing time on machines given in

hours and passing is not allowed.

 

Job

1          2          3         4          5

A    3          8          7         5          2

Machine   B     3          4          2         1          5

C    5          8          10        7          6

 

  1. Draw the network and find the critical path for the project comprising of 9 activities

 

Activity              A         B         C         D         E          F          G         H         I

 

Immediate

Predecessor      __        __        __        A         B         C         D, E     B         H, F

 

Estimated time

(weeks)              3          5          4          2          3          9          8          7          9

 

  1. Explain ABC Analysis in inventory control.

 

  1. Neon lights in a campus are replaced at the rate of 100 units per day. The physical plant orders the neon lights periodically.  It costs Rs.100 to initiate a purchase order.  A neon light kept in storage is estimated to cost about Rs.2 per day.  The lead-time between placing and receiving an order is 12 days.  Determine the optimal inventory policy for ordering the neon lights.

 

PART – C

Answer any Two questions.                                                       (2 x 20 = 40 Marks)

 

  1. Use simplex method to

Maximize  Z = 3x1 + 2x2 + 5x3

Subject to

x1 + 2x2 + x3  £ 430

3x1 + 2x3  £  460

x1 + 4x3  £ 420

x1, x2, x3  ³ 0

  1. A manufacturer has distribution centers at X, Y and Z. These centers have availability 40, 20 and 40 units respectively of his product.  His retail outlets at A, B, C, D and E requires 25, 10, 20 30 and 15 units respectively.  The transport cost (in rupees) per unit between each centers and outlet is given below.

Retail outlet

Distribution centre         A        B          C       D        E

X                     55        30        40       50        50

Y                     35        30        100      45        60

Z                      40        60        95        35        30

 

Determine the optimal distribution to minimize the cost of transportation.

 

  1. A project is composed of 11 activities. The time estimates (in days) for which are given below:

Activity           Optimistic time           Pessimistic time           Most likely time

(1, 2)                            7                                 17                                9

(1, 3)                            10                                60                                20

(1, 4)                            5                                 15                                10

(2, 5)                            50                              110                                65

(2, 6)                            30                                50                                40

(3, 6)                            50                                90                                55

(3, 7)                            1                                 9                                 5

(4, 7)                            40                                68                                48

(5, 8)                            5                                 15                                10

(6, 8)                            20                                52                                27

(7, 8)                            30                                50                                40

 

  • Draw the network diagram for the project.
  1. Find the expected value and variance for each activity.
  • Find the critical path.
  1. Find the total float and free float for each activity.
  • What is the probability of completing the project in 125 days?
  1. Explain in detail a single item static inventory model with one price break with suitable diagrams.

Go To Main Page

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur