VITEEE 2015 Previous Year Mathematics Question Paper With Answer Key

Solved Paper -2015

VIT

Engineering Entrance Exam

Mathematics

1. If the matrix  then adj (adj A) is equal to

(a)   

(b)    

(c)    

(d)    

Ans: (a)

2. Which of the following options is not the asymptote of the curve 3x2 + 2x2y – 7xy2 + 2y3 – 14xy + 7y2 + 4x + 5y = 0?

(a)    

(b)   

(c)   

(d)    

Ans: (c)

3. If N is a set of natural numbers, then under binary operation a ∙ b = a + b, (N, ∙) is

(a)   quasi-group    

(b)   semi-group

(c)   monoid

(d)   group

Ans: (b)

4. 

(a)     

(b)     

(c)     

(d)    

Ans: (a)

5. If (2, 7, 3) is one end of a diameter of the sphere x2 + y2 + z2 – 6x – 12y – 2z + 20 = 0, then the coordinates of the other end of the diameter are

(a)   (−2, 5, −1)

(b)   (4, 5, 1)

(c)   (2, −5, 1)

(d)   (4, 5, −1)

Ans: (d)

6. The two lines x = my + n, z = py + q and x = m′y + n′, z = p′y + q′ are perpendicular to each other, if

(a)     

(b)    

(c)    

(d)     

Ans: (d)

7. A tetrahedron has vertices at O(0, 0, 0), A(−2, 1), B(−2, 1, 1) and C(1, −1, 2). Then, the angle between the faces OAB and ABC will be

(a)    

(b)     

(c)    

(d)     

Ans: (c)

8. If a line segment OP makes angle of  with X-axis and Y-axis, respectively. Then, the direction cosines are

(a)    

(b)     

(c)    

(d)     

Ans: (b)

9. If p, q, r are simple propositions with truth values T, F, T, then the truth value of (~p ⋁ q) ⋀ ~ r ⇒ p is

(a)   true

(b)   false

(c)   true, if r is false

(d)   true, if q is true

Ans: (a)

10. On the interval [0, 1], the function x25(1 – x)75 takes its maximum value at the point

(a)   0

(b)   1/4

(c)   1/2

(d)   1/3

Ans: (b)

11. If |z| ≥ 3, then the least value of  is

(a)   11/2

(b)   11/4

(c)   3

(d)   1/4

Ans: (b)

12. The normal at the point (at21, 2at1) on the parabola meets the parabola again in the point (at22, 2at2), then

(a)     

(b)   

(c)    

(d)     

Ans: (b)

13. If  then the angle θ between a and b is given by

(a)  

(b)    

(c)    

(d)    

Ans: (c)

14. The area bounded by the curves y = cos x and y = sin x between the ordinates x = 0 and  is

(a)   (4√2 – 2) sq units

(b)   (4√2 + 2) sq units

(c)   (4√2 – 1) sq units

(d)   (4√2 + 1) sq units

Ans: (a)

15. If a, b and c are three non-coplanar vectors, then (a + b – c) ∙ [(a – b) × (b – c)] equals

(a)   0

(b)   a ∙ b × c

(c)   a ∙ c × b

(d)   3a ∙ b × c

Ans: (b)

16. If there is an error of m% in measuring the edge of cube, then the per cent error in estimating its surface area is

(a)   2 m

(b)   3 m

(c)   1 m

(d)   4 m

Ans: (a)

17. If the rectangular hyperbola is x2 – y2 = 64. Then, which of the following is not correct?

(a)   The length of latusrectum is 16

(b)   The eccentricity is √2

(c)   The asymptotes are parallel to each other

(d)   The directrices are x = ±4√2

Ans: (c)

18. The equation of tangents to the hyperbola 3x2 – 2y2 = 6, which is perpendicular to the line x – 3y = 3, are

(a)   y = −3x ± √15

(b)   y = 3x ± √6

(c)   y = −3x ± √6

(d)   y = 2x ± √15

Ans: (a)

19.  is equal to

(a)   1

(b)   0

(c)   −2

(d)   −1

Ans: (d)

20. The area of the region bounded by the curves x2 + y2 = 9 and x + y = 3 is

(a)    

(b)    

(c)     

(d)     

Ans: (c)

21. For any three vectors a, b and [a + b, b +c, c + a] is

(a)   [a b c]

(b)   3[a b c]

(c)   2[a b c]

(d)   0

Ans: (c)

22.  is equal to

(a)   0

(b)   2

(c)   4

(d)   7

Ans: (a)

23. If the mean and variance of a binomial distribution are 4 and 2, respectively. Then, the probability of atleast 7 successes is

(a)    

(b)    

(c)    

(d)     

Ans: (c)

24. The shortest distance between the lines  and   is

(a)     

(b)    

(c)    

(d)     

Ans: (b)

25. If a plane passing through the point (2, 2, 1) and is perpendicular to the planes 3x + 2y + 4z + 1 = 0 and 2x + y + 3z + 2 = 0. Then, the equation of the plane is

(a)   2x – y – z – 1 = 0

(b)   2x + 3y + z – 1 = 0

(c)   2x + y + z + 3 = 0

(d)   x – y + z – 1 = 0

Ans: (a)

26. From a city population, the probability of selection a sale or smoker is 7/10, a male smoker is 2/5 and a male, if a smoker is already selected, is 2/3. Then, the probability of

(a)   selecting a male is 3/2

(b)   selecting a smoker is 1/5

(c)   selecting a non-smoker is 2/5

(d)   selecting a smoker, if a male is first selected, is given by 8/5

Ans: (c)

27. At t = 0, the function  has

(a)   a minimum

(b)   a discontinuity

(c)   a point of inflexion

(d)   a maximum

Ans: (d)

28. Using Rolle’s theorem, the equation a0xn + a1xn−1 + … + an = 0 has atleast one root between 0 and 1, if

(a)     

(b)    

(c)     

(d)   

Ans: (d)

29. Which of the following inequality is true for x > 0?

(a)    

(b)    

(c)    

(d)     

Ans: (d)

30. The solution of  where k is non=zero constant, vanishes when y = 0 and tends of finite limit as y tends to infinity, is

(a)    

(b)    

(c)   

(d)   

Ans: (c)

31. The differential equation (3x + 4y + 1) dx + (4x + 5y + 1) dy =0 represents a family of

(a)   circles

(b)   parabolas

(c)   ellipses

(d)   hyperbolas

Ans: (d)

32. If  then   is equal to

(a)    

(b)     

(c)    

(d)    

Ans: (b)

33. If A, B, C are three events associated with a random experiment, then  is

(a)   P(A⋃B⋃C)

(b)   P(∩B∩C)

(c)    

(d)    

Ans: (b)

34. If  then rank (A) is equal to

(a)   4

(b)   1

(c)   2

(d)   3

Ans: (d)

35. The probability of atleast one double six being thrown in n throws with two ordinary dice is greater than 99%.

Then, the least numerical value of n is

(a)   100

(b)   164

(c)   170

(d)   184

Ans: (b)

36. Find the value of k for which the simultaneous equations x + y + z =3; x + 2y + 3z = 4 and x + 4y + kz = 6 will not have a unique solution.

(a)   0

(b)   5

(c)   6

(d)   7

Ans: (d)

37. If the complex number z lies on a circle with centre at the origin and radius 1/4, then the complex number −1 + 8z lies on a circle with radius

(a)   4

(b)   1

(c)   3

(d)   2

Ans: (d)

38. If line y = 2x + C is a normal to the ellipse  then

(a)    

(b)    

(c) 

(d)    

Ans: (c)

39. If x2 + x + 1 = 0, then the value of  is

(a)   13

(b)   12

(c)   9

(d)   14

Ans: (b)

40. If p : It rains today, q : I go to school, r : I shall meet any friends and s : I shall go for a movie then which of the following is the proportion?

If it does not rain or if I do not go to school then I shall meet my friend and go for a movie.

(a)   (~p ⋀ ~ q) ⇒ (r ⋀ s)

(b)   (~p ⋀ q) ⇒ (r ⋀ s)

(c)   (~p ⋁ q) ⇒ (r ⋁ s)

(d)   None of these

Ans: (b)

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur