VITEEE 2016 Previous Year Mathematics Question Paper With Answer Key

VITEE-2016 Solved Paper

PART III MATHEMATICS

 

1. The solution of the differential equation 

(a) 

(b) 

(c) 

(d) 

Ans: (b)

2. A tetrahedron has vertices at O(0, 0, 0), A(1, 2, 1) B(2, 1, 3) and C(−1, 1, 2). Then the angle between the faces OAB and ABC will be

(a)  120°

(b)  cos1(17/31)

(c)  30°

(d)  90°

Ans: (a)

3. The foci of the ellipse  and the hyperbola  coincide then value of b2 is

(a)  1

(b)  5

(c)  7

(d)  9

Ans: (c)

4. If the tangent to the function y = f(x) at (3, 4) makes an angle of 3π/4 with the positive direction of x-axis in anticlockwise direction then f ʹ(3) is

(a)  −1

(b)  1

(c)  1/√3

(d)  √3

Ans: (a)

5. The probability of India winning a test match against Australia is 1/2 assuming independence from match to match. The probability that in a match series India’s second win occurs at third test match is

(a)  1/8

(b)  1/4

(c)  1/2

(d)  2/3

Ans: (b)

6. If  then the value of   is (given that 

(a)  −7

(b)  7

(c)  14

(d)  −14

Ans: (b)

7. If f(x) = x2, g(x) = 2x, 0 ≤ x ≤ 2 then the value of  is

(a)  10/3

(b)  1/3

(c)  11/3

(d)  32

Ans: (d)

8. If A and B are matrices and B = ABA1 then the value of (A + B) (A – B) is

(a)  A2 + B2

(b)  A2 – B2

(c)  A + B

(d)  A – B

Ans: (b)

9. The value of (1 + ω –ω2)7 is

(a)  128ω2

(b)  −128ω2

(c)  128ω

(d)  −128ω

Ans: (b)

10. The moment about the point  acting through the point 2i + 3j + k is

(a)

(b)

(c) 

(d) 

Ans: (d)

11. If g(x) is a polynomial satisfying g(x) g(y) = g(x) + g(y) + g(xy) – 2 for all real x and y and g(2) = 6 then  is

(a)  9

(b)  10

(c)  25

(d)  20

Ans: (b)

12. The equation of one of the common tangents to the parabola y2 = 8x and x2 + y2 – 12x + 4 = 0 is

(a)  y = x + 2

(b)  y = x – 2

(c)  y = x + 2

(d)  None of these

Ans: (c)

13. If  then the value of y is

(a) 

(b) 

(c) 

(d) 

Ans: (b)

14. What is the area of a loop of the curve r = a sin 3θ?

(a) 

(b) 

(c) 

(d) 

Ans: (d)

15. Convert the hexadecimal numeral ABCD into binary numeral

(a)  (1010101111001101)2

(b)  (1001000011111111)2

(c)  (1111110000010001)2

(d)  (1000100100111100)2

Ans: (a)

16. The normal at the point (at12, 2at1) on the parabola, cuts the parabola again at the point whose parameter is

(a) 

(b) 

(c)

(d) 

Ans: (c)

17. The distance moved by the particle in time t is given by s = t3 – 12t2 + 6t + 8. At the instant, when its acceleration is zero the velocity is :

(a)  42

(b)  −42

(c)  48

(d)  −48

Ans: (b)

18. The logical expression X, in its simplest form for the truth table

(a)  X = a, b

(b)  X = a + b

(c)  X = a’.b

(d)  X = a.b’

Ans: (a)

19. The value of is equal  to

(a)  −3/4

(b)  3/4

(c)  1/16

(d)  1/4

Ans: (b)

20. Consider the objective function Z = 40x + 50y. The minimum number of constraints that are required to maximize Z are

(a)  4

(b)  2

(c)  3

(d)  1

Ans: (c)

21. In a culture the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000 if the rate of growth of bacteria is proportional to the number present.

(a) 

(b) 

(c)

(d)

Ans: (b)

22. The value of  is

(a)  π/6

(b)  π/4

(c)  π/3

(d)  π/2

Ans: (b)

23. If a = cos 2α + i sin 2α, b = cos 2β + i sin 2β, c = cos 2γ + i sin 2γ and d = cos 2δ + i sin 2δ, then 

(a)  √2 cos(α + β + γ + δ)

(b)  2 cos (α + β + γ + δ)

(c)  cos((α + β + γ + δ)

(d)  None of these

Ans: (b)

24. If the mean of a binomial distribution is 25, then its standard deviation lies in the interval

(a)  [0, 5)

(b)  (0, 5]

(c)  [0, 25)

(d)  (0, 25]

Ans: (a)

25. Number of ways of selecting three squares on a chessboard so that all the three be on a diagonal line of the board or parallel to it is

(a)  196

(b)  126

(c)  252

(d)  392

Ans: (d)

26. If A and B are two matrices such than rank of A = m and rank of B = n, then

(a)  rank (AB) = mn

(b)  ran (AB) ≥ ran (A)

(c)  ran (AB) ≥ rank (B)

(d)  rank (AB) ≤ min (rank A, rank B)

Ans: (d)

27. A variable plane remains at constant distance p from the origin. If it meets coordinate axes at points A, B, C then the locus of the centroid of ∆ ABC is

(a)  x2 + y2 + z2 = 9p2

(b)  x3 + y3 + z3 = 9p3

(c)  x2 + y2 + z2 = 9p2

(d)  x3 + y3 + z3 = 9p3

Ans: (a)

28. While shuffling a pack of 52 playing cards, 2 are accidentally dropped. The probability that the missing cards to be of different colours is

(a)  29/52

(b)  1/2

(c)  26/51

(d)  27/51

Ans: (c)

29. Which of the following is INCORRECT for the hyperbola x2 – 2y2 – 2x + 8y – 1 = 0

(a)  It eccentricity is √2

(b)  Length of the transverse axis is 2√3

(c)  Length of the conjugate axis is 2√6

(d)  Latus rectum is 4√3

Ans: (a)

30. A box contains 20 identical balls of which 10 are blue and 10 are green. The balls are drawn at random from the box one at a time with replacement. The probability that a blue ball is drawn 4th time on the 7th draw is

(a)  27/32

(b)  5/64

(c)  5/32

(d)  1/2

Ans: (c)

31. The number of common tangents to the circles x2 + y2 – 6x – 14y + 48 = 0 and x2 + y2 – 6x = 0 is

(a)  1

(b)  2

(c)  0

(d)  4

Ans: (d)

32. The solution of the equation cos2θ + sin θ + 1 = 0, lies in the interval

(a)   

(b)   

(c)   

(d)   

Ans: (d)

33. If f(x) = (1 + x)2/x for x ≠ 0 and f(0) = e2 is

(a)  left continuous only at x = 0

(b)  right continuous only at x = 0

(c)  continuous at x = 0

(d)  discontinuous at x = 0

Ans: (c)

34. If y = yx/lnx then  at x = e is

(a)  e

(b)  2e log 2

(c)  log 2

(d)  0

Ans: (d)

35. is equal to

(a)   

(b)   

(c)    

(d)   

Ans: (d)

36. If the letters of the word KRISNA are arranged in all possible ways and these words are written out as a in a dictionary, then the rank of the word KRISNA is

(a)  324

(b)  341

(c)  359

(d)  None of these

Ans: (a)

37. The shortest distance between the lines x =  y + 2 = 6z – 6 and x + 1 = 2y = −12z is

(a)  1/2

(b)  2

(c)  1

(d)  3/2

Ans: (b)

38. The domain and range of the function f given by f(x) = 2 – |x – 5| is

(a)  Domain = R+, Range = (−∞, 1]

(b)  Domain = R, Range = (−∞, 2)

(c)  Domain = R, Range = (−∞, 2)

(d)  Domain = R+, Range = (−∞, 2]

Ans: (b)

39. The number of surjective function from A to B where A = A{1, 2, 3, 4} and B = {a, b} is

(a)  14

(b)  12

(c)  2

(d)  15

Ans: (a)

40. If f(a + b – x) = f(x), then  is equal to

(a)  

(b)    

(c)   

(d)   

Ans: (d)

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur