Loyola College M.Sc. Mathematics April 2012 Theory Of Fuzzy Subsets Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – MATHEMATICS

FOURTH SEMESTER – APRIL 2012

MT 4961 – THEORY OF FUZZY SUBSETS

 

 

Date : 25-04-2012             Dept. No.                                        Max. : 100 Marks

Time : 1:00 – 4:00

 

Answer all the questions. Each question carries 20 marks.

  1. a)1) Find the following index of fuzzinessfor the given fuzzy subsets

={(x1/0),(x2/0.3), (x3/0.7),(x4/1), (x5/0), (x6/0.2),(x7/0.6)}  and

={(x1/0.3),(x2/1), (x3/0.5),(x4/0.8), (x5/1), (x6/0.5),(x7/0.6)}.

OR

a)2) Give the ordinary subset of level α for the fuzzy subset ={(x1/0.7),(x2/0.5), (x3/1),(x4/0.2), (x5/0.6)}      i) α =0.1  ii) α=0.6  iii) α=0.8 iv) 0.9                                                                                                                                     (5)

b)1) State and prove decomposition theorem for fuzzy subsets. Decompose the fuzzy subset {(x1|0.3), (x2|0.7), (x3|0.5), (x 4|0.1), (x5|0.6)}.

b)2) Let  = {(x1/0),(x2/0.3), (x3/0.7),(x4/1), (x5/0), (x6/0.2),(x7/0.6)}

= {(x1/0.3),(x2/1), (x3/0.5),(x4/0.8), (x5/1), (x6/0.5),(x7/0.6)} and

= {(x1/1),(x2/0.5), (x3/0.5),(x4/0.2), (x5/0), (x6/0.2),(x7/0.9)}.

Calculate                                                                           (6+9)

OR

c)1) Let  = {(x1|0.2), (x2|0.7), (x3|1), (x 4|0), (x5|0.5)} and = {(x1|0.5), (x2|0.7), (x3|0), (x 4|0.5), (x5|0.5)}.

Check whether?

c)2) List down all the ‘algebraic’ properties of fuzzy subsets. Explain in detail, giving the implications of those properties that make a difference between crisp sets and fuzzy subsets.                              (5+10)

  1. II. a)1) Choosing a suitable example, explain fuzzy subsets induced by a mapping

OR

a)2) Choosing a suitable example, explain normal and global projections.                                                          (5)

b)1) Let then prove that ; where  is the strongest path existing from x to y of length k.

b)2) Define the algebraic product and sum of two fuzzy relations. Explain with examples.                           (5+10)

 

 

 

OR

c)1) Prove that the transitive closure of any fuzzy binary relation is transitive binary relation.

c)2) For ,  and  as given below, verify the following conditions.

(5+10)

A B C D E A B C D E A B C D E
 A 0 1 1 1 1 A 1 0.5 0.5 1 0.7 A 0 0.3 1 0 0.5
B 0 0 0.9 0.7 0.3 B 0 1 0.7 0.7 0 B 0.3 0.2 0 0.8 0.1
C 0 0 0 0.7 0.3  C 0 1 1 0.7 0 C 1 0 0 0.2 1
D 0 0 0 0 0.3 D 0 0.3 0.3 0 0 D 0 0.8 0.2 1 0.4
 E 0 0 0 0 0 E 1 0.5 0 0.5 1 E 0.5 0.1 1 0.4 0.4

 

  • a)1) Contrast fuzzy ordinal relation with fuzzy resemblance relation. Give an example.

OR

a)2) Consider the relation  given with the membership function

Is this relation a resemblance relation?                                                                                                           (5)

b)1)  Define anti symmetric and perfect anti symmetric fuzzy binary relations. Give examples. Is it true to say that any perfect anti symmetric relation is evidently anti symmetric?

b)2) Let  be a similitude relation. Let x, y, z be    the elements of E. Put    then prove that                                                                                        (7+8)

OR

b)3) Explain   the following in detail with examples: Relation of (i)preorder (ii) anti reflexive preorder (iii) similitude (iv)dissimilitude and (v)Resemblance.                                                                                     (15)

 

  1. a)1) Explain the three fundamental problems in the process of pattern recognition.

OR

a)2) State the fuzzy c-means algorithm as given  J. Bezdek.                                                                                  (5)

b)1) How will you justify that fuzzy applications will yield better results in the field of pattern recognition rather than any other traditional methods.

b)2) Explain  how fuzzy clustering methods are based on fuzzy equivalence relation. Given any relation, how is it possible to apply this method.                                                                                                                     (7+8)

OR

c)1) Explain in detail  with  examples (i)the two fuzzy clustering methods and (ii) the two pattern recognition methods.                                                                                                                                                                      (15)

  1. a) Explain how fuzzy application could make a difference in the field of Economics OR Engineering. (5)
  2. b) Explain in detail, with a suitable example, fuzzy application in the field of Medicine OR (15)

 

 

Go To Main page

 

 

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur