Loyola College M.Sc. Statistics Nov 2012 Statistical Computing – II Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – STATISTICS

THIRD SEMESTER – NOVEMBER 2012

ST 3814 – STATISTICAL COMPUTING – II

 

 

Date : 06/11/2012            Dept. No.                                        Max. : 100 Marks

Time : 9:00 – 12:00

Answer any THREE questions:

All carry equal marks          

                                                           

  1. From the following transition probability matrix,

0        1      2        3        4     5

 

  1. State the state space
  2. Find the equivalence class
  • Find the states which are recurrent or transient
  1. Determine the periodicity of the states
  2. Find the stationary distribution

 

  1. Suresh has scored 97% in an entrance exam. It is decided to estimate the number of candidates who have scored more than Mr.Suresh. The marks scored by the candidates are displayed in 5 boards. The following is the relevant data,

 

Board No No.Of Candidates
1 30
2 15
3 20
4 25
5 10

Guided by the contents of the boards it is decided to use the sampling design,

 

 

 

 

 

Estimate the number of candidates who have scored more than Mr. Suresh and also compute the estimated variance of the estimate assuming the set {1,3,5} is the sampled set. Find the true variance of the estimator.

 

 

  1. a). The data  below are obtained from a small artificial population which exhibits a fairly study raising trend. Each column represents a Systematic sample and the rows are the strata. Compare the precision of Systematic sampling, Simple random sampling and Stratified sampling.
Systematic Sampling Number
Strata 1 2 3 4 5 6 7 8 9 10
I 28 32 33 33 35 34 37 39 40 40
II 15 16 17 17 21 20 22 25 26 24
III 2 3 3 4 7 6 9 9 10 8
IV 5 7 8 9 12 11 14 15 15 16

(17 M)

 

b).        A sample of 40 students is to drawn from a population of two hundred students belonging

to A&B localities. The mean & standard deviation and their heights are given below

 

 

 

Locality

Total No.Of People Mean (Inches) S.D(Inches)
A 150 53.5 5.4
 

B

             50 62.5 6.2
  1. Draw a sample for each locality using proportional allocation
  2. Obtain the variance of the estimate of the population mean under proportional allocation.

(16 M)

 

 

 

  1. a) If X1 and X2 be 2 observations from f ( x, θ )= θ Xa-1 ,0 < X < 1. To test  H0 : θ = 1 Vs H1 : θ = 2, the critical region in C = {(X1, X2 )|3/4x1 < x2 } . Find the significance level and power of the test. Draw the power curve.                                                                                                (18 M)

 

  1. b) Let X ~ B ( 1, θ ); θ = 0.1, 0.2, 0.3. Examine if UMP level 0.05 test exist for H : θ = 0.1 Vs K : θ = 0.2, 0.3. (15 M)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Perspiration from 20 healthy females were analyzed. Three components X1 = Sweat rate , X2 = Sodium content  and X3 = Potassium  content  were measured and the results are given below:

 

Individual           X1                 X2                     X3

1                   3.8                48.6                  9.4

2                5.8                   65.2                 8.1

3                  3.9                       47.3                 11.0

4                  3.3                       53.3                 12.1

5                 3.2                       55.6                  9.8

6                 4.7                       37.1                  8.0

7                 2.5                       24.9                 14.1

8                            7.3                       33.2                  7.7

9                 6.8                       47.5                  8.6

10                 5.5                      54.2                11.4

11               4.0                   37.0              12.8

12               4.6                   58.9              12.4

13               3.6                   27.9                9.9

14               4.6                   40.3                8.5

15               1.6                   13.6              10.2

16               8.6                   56.5                7.2

17               4.6                   71.7                8.3

18                           6.6                   52.9             11.0

19               4.2                   44.2             11.3

20               5.6                   41.0               9.5

 

Test  the hypothesis  H0 : µ´  = [ 6  ,  52  , 12 ]  against H1 : µ´  ≠ [ 6  ,  52  , 12 ]  at 1% level of

significance.

 

Go To Main Page

 

 

Latest Govt Job & Exam Updates:

View Full List ...

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur