LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.Sc. DEGREE EXAMINATION – MATHEMATICS
|
FIFTH SEMESTER – November 2008
MT 5400 – GRAPH THEORY
Date : 12-11-08 Dept. No. Max. : 100 Marks
Time : 9:00 – 12:00
PART- A
Answer ALL the questions. Each question carries 2 marks. (10 x 2 = 20 marks)
- Show that every cubic graph has an even number of vertices.
- Let G = (V, E) be a (p, q) graph. Let and . Find the number of vertices and edges in G – v and G – e.
- Define a walk and a path.
- What is a connected graph?
- Give an example of a disconnected graph with 4 components.
- Draw all non-isomorphic trees on 6 vertices.
- Define an Eulerian trail and a Hamiltonian cycle.
- What is a cut edge? Give an example.
- Determine the chromatic number of Kn.
- Define a planar graph and give an example of a non-planar graph.
PART – B
Answer any FIVE questions. Each question carries EIGHT marks. (5 x 8 = 40 marks)
- (a). Show that in any group of two or more people there are always two with exactly
the same number of friends inside the group.
(b). Let G be a (p, q)-graph all of whose vertices have degree k or k + 1. If G has t
vertices of degree k then show that t = p(k+1)-2q. (4+4)
- Let G1 be a (p1, q1)-graph and G2 a (p2, q2)-graph. Show that G1 + G2 is a (p1 + p2, q1 + q2 + p1p2) – graph and G1 x G2 is a (p1 p2, q1p2 + q2p1) – graph.
- (a).Prove that any self – complementary graph has 4n or 4n+1 vertices.
(b).Prove that a graph with p vertices and is connected. (4+4)
- (a). Prove that a closed walk of odd length contains a cycle.
(b). Find the composition of the following graphs.
(4+4)
- (a). Show that if G is disconnected then GC is connected.
(b). Determine the centre of the following graph.
(4+4)
- Let v be a vertex of a connected graph. Then prove that the following statements are equivalent:
- v is a cut-point of G.
- There exists a partition of V – {v} into subsets U and W such that for each
uU and wW, the point v is on every (u, w) – path.
- There exist two points u and w distinct from v such that v is on every (u, w)-
path.
- Let G be a connected plane graph with V, E and F as the sets of vertices, edges and faces respectively. Then prove that | V | – | E | + | F | = 2.
- State and prove the five-colour theorem.
PART – C
Answer any TWO questions. Each question carries 20 marks. (2 x 20 = 40 marks)
- (a). Prove that the maximum number of edges among all graphs with p vertices with no
triangles is [p2 / 4], where [x] denotes the greatest integer not exceeding the real number x.
(b). Show that an edge e of a graph G is a cut edge if and only if it is not contained in any cycle
of G. (15+5)
- (a). Prove that a graph G with at least two points is bipartite if and only if all its cycles
are of even length.
(b). Let G be graph with with p ≥ 3 and. Then prove that G is Hamiltonian. (10+10)
- (a). If G is Hamiltonian, prove that for every non-empty proper subset S of V, the
number of components of G \ S , namely, ω(G \ S) ≤ | S |.
(b). Prove that the following statements are equivalent for a connected graph G.
- G is Eulerian.
- Every vertex of G has even degree.
- The set of edges of G can be partitioned into cycles. (5+15)
- Let G be a (p, q)-graph. Prove that the following statements are equivalent.
- G is a tree.
- Any two vertices of G are joined by a unique path.
- G is connected and p = q + 1.
- G is acyclic and p = q + 1.
(20)