Loyola College M.Sc. Mathematics April 2012 Partial Differential Equations Question Paper PDF Download

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – MATHEMATICS

SECOND SEMESTER – APRIL 2012

MT 2812 – PARTIAL DIFFERENTIAL EQUATIONS

 

 

Date : 21-04-2012             Dept. No.                                        Max. : 100 Marks

Time : 9:00 – 12:00

 

 

Answer all questions. Each question carries 20 marks.

 

  1. (a) Using Charpit’s method solve .                                                       (5)

 

(OR)

 

  • Solve. (5)

 

  • Obtain the condition for compatibility of f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0.
  • Show that, are compatible and find its solution.  (7 + 8)

(OR)

  • Determine the characteristics of z = p2 – q2 and find the integral surface which passes through the parabola 4z + x2 = 0, y = 0. (15)

 

  1. (a) If f and g are arbitrary functions show that  is a solution of  provided .                                   (5)

 

(OR)

 

(b)  Solve .                                                                (5)

 

(c) Define affine transformation and prove that the sign of the discriminate of a second of second order partial differential equation is invariant under the general affine transformation.                                                                                                     (15)

 

(OR)

 

(d) Obtain the canonical form of the parabolic partial differential equation.

(e) Reduce  to canonical form.                                  (10 +5)

 

  1. (a) Obtain the Poisson’s equation. (5)

 

(OR)

 

(b)  D’Alembert’s solution of the one-dimensional wave equation.                           (5)

 

(c)  Solve a two dimensional Laplace equation  subject to the boundary conditions; u(x, 0), u (x, a) = 0, u (x, y) → 0 as x → ∞, where x ≥ 0 and 0 ≤ y ≤ a.

(15)

 

(OR)

 

(d) State and prove Interior Dirichlet Problem for a Circle.                                       (15)

 

  1. (a) Solve the wave equation given by , , subject to the initial conditions , , .                                  (5)

(OR)

 

(b)  Find the steady state temperature distribution u(x, y) in a long square bar of side p with one face maintained at constant temperature u0 and the other faces at zero temperature.                                                                                            (5)

 

(c)  Use Laplace transform method, to solve the initial value problem

0 < t < ¥ subject to the conditions u(0, t) = 0, u(l, t) = g(t), 0 < t < ¥ and u(x, 0) = 0, 0 < x < l.                                                                                                                (15)

 

(OR)

 

(d) State and prove Helmholtz Theorem.                                                                   (15)

 

  1. (a) Using Fredholm determinants, find the resolvent kernel when K(x, t) = xet, a = 0,

b = 1.                                                                                                                     (5)

(OR)

(b)  If a kernel is symmetric then prove that all its iterated kernels are also symmetric.

(5)

 

(c)  Find the solution of Volterra’s integral equation of second kind by the method of successive substitutions.                                                                                             (15)

(OR)

(d) State and prove Hilbert theorem.                                                                          (15)

 

 

Go To Main page

 

 

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur