AMRITA Engineering (UG) 2015 Syllabus

 

Click here for AMRITA Engineering Model Papers & Preparatory Course

 

AMRITA Engineering (UG) 2015 Important Dates

AMRITA-Engg-2015

 

Click here for AMRITA Engineering Model Papers & Preparatory Course

Important Dates for AMRITA Engineering 2015 :-

Online registration starts 3rd November, 2014
Issue of OMR application form begins 17th November, 2014
Last date of issue of OMR Application form 23rd March, 2015
Last date for receiving completed applications (OMR and Online) 25th March, 2015

Date of Entrance Examination

Computer Based Test (CBT) 16th-18th April, 2015
Paper & Pencil Based Test (P&P) 25th April, 2015 (Forenoon)

 

AMRITA 2015 Chemistry Syllabus

CHEMISTRY

a. BASIC CONCEPTS

Atomic and molecular masses, mole concept and molar mass, percentage composition, empirical and molecular formula, chemical reactions, stoichiometry and calculations based on stoichiometry.

b. ATOMIC STRUCTURE, CHEMICAL BONDING AND MOLECULAR STRUCTURE

Bohr’s model, de Broglie’s and Heisenberg’s principles, Quantum mechanical model, Orbital concept and filling up of electrons; Bond formation and bond parameters; Valence bond and molecular orbital theory; VSEPR theory; Hybridization involving s, p and d orbital; Hydrogen bond.

c. EQUILIBRIUM AND THERMODYNAMICS

Law of chemical equilibrium and Equilibrium Constant; Homogeneous and Heterogeneous equilibria; LeChatelier’s principle, Ionic equilibrium; Acids, Bases, Salts and Buffers; Solubility product; Thermodynamic state; Enthalpy, Entropy and Gibb’s free energy; Heats of reactions; Spontaneous and non- spontaneous processes.

d. ELECTROCHEMISTRY, KINETICS AND SURFACE CHEMISTRY

Specific, molar and equivalent conductance of weak and strong electrolytes; Kohlrausch law; Electrochemi cal cells and Nernst equation; batteries, fuel cells and corrosion Rate of a reaction and factors affecting the rate: Rate constant, order and molecularity, collision theory. Physisorption and chemisorptions; colloids and emulsions; homogeneous and heterogeneous catalysis.

e. SOLID STATE AND SOLUTIONS

Molecular, ionic, covalent and metallic solids; amorphous and crystalline solids; crystal lattices and Unit cells; packing efficiency and imperfections; electrical and magnetic properties. Normality, molarity and molality of solutions, vapour pressure of liquid solutions; ideal and non-ideal solutions, colligative properties  abnormality.

f. HYDROGEN

Position of hydrogen in the periodic table; dihydrogen and hydrides- preparation and properties; water, hydrogen peroxide and heavy water; hydrogen as a fuel.

g. S – BLOCK ELEMENTS

Group 1 and 2 Alkali and Alkaline earth elements; general characteristics of compounds of the elements; anomalous behavior of the first element; preparation and properties of compounds like sodium and calcium carbonates, sodium chloride, sodium hydroxide; biological importance of sodium, potassium and calcium.

h. P – BLOCK ELEMENTS

Groups 13 to 17 elements: General aspects like electronic configuration, occurrence, oxidation states, trends in physical and chemical properties of all the families of elements; compounds of boron like borax, boron hydrides and allotropes of carbon; compounds of nitrogen and phosphorus, oxygen and sulphur; oxides and oxyacids of halogens.

i. D, F – BLOCK ELEMENTS

Electronic configuration and general characteristics of transition metals; ionization enthalpy, ionic radii, oxidations states and magnetic properties; interstitial compounds and alloy formation; lanthanides and actinoids and their applications.

j. CO-ORDINATION COMPOUNDS

Werner’s theory and IUPAC nomenclature of coordination compounds; coordination number and isomerism;  Bonding in coordination compounds and metal carbonyls and stability; application in analytical  methods, extraction of metals and biological systems.

k. BASIC ORGANIC CHEMISTRY AND TECHNIQUES
Tetravalence of carbon and shapes or organic compounds; electronic displacement in a covalent bond-inductive  and electromeric effects, resonance and hyperconjugation; hemolytic and heterolytic cleavage of covalent bond – free radicals, carbocations, carbanions electrophiles and nucleophiles; methods of purification of organic compounds; qualitative and quantitative analysis.

l. HYDROCARBONS, HALOALKANES AND HALOARENES

Alkanes, alkenes,alkynes and aromatic hydrocarbons; IUPAC nomenclature, isomerism; conformation of ethane, geometric isomerism, general methods of preparation and properties, free radical mechanism of halogenations, Markownikoff’s addition and peroxide effect; benzene, resonance and aromaticity, substitution reactions; Nature of C-X bond in haloalkanes and haloarenes; mechanism of substitution reactions

m. ALCOHOLS, PHENOLS AND ETHERS

IUPAC nomenclature, general methods of preparation, physical and chemical properties, identification of primary, secondary and tertiary alcohols, mechanism of dehydration; electrophillic substitution reactions.

n. ALDEHYDES, KETONES, CARBOXYLIC ACIDS AND AMINES

Nomenclature, general methods of preparation, physical and chemical properties of the group members; nucleophilic addition and its mechanism; reactivity of alpha hydrogen in aldehydes; mono and dicarboxylic acids-preparation and reactions; identification of primary, secondary and tertiary amines; preparation and reactions of diazonium salts and their importance in synthesis.

o. POLYMERS AND BIOMOLECULES

Natural and synthetic polymers, methods of polymerization, copolymerization, molecular weight of polymers,  Polymers of commercial  importance, Carbohydrates: mono, oligo and polysaccharides; Proteins Alpha amino acid, peptide linkage and polypeptides: Enzymes, Vitamins and Nucleic acids (DNA and RNA)

p. ENVIRONMENTAL CHEMISTRY

Air, water and soil pollution, chemical reactions in atmosphere, acid rain; ozone and its depletion; green house effect and global warming; pollution control.

q. CHEMISTRY IN EVERYDAY LIFE

Drugs and their interaction; chemicals as analgesics, tranquilizers, antiseptics, antibiotics, antacids and antihistamines; Chemicals in food-  preservatives , artificial sweetening agents; cleansing agents – soaps and detergents.

AMRITA 2015 Physics Syllabus

      PHYSICS

a. UNITS AND DIMENSIONS

Units for measurement, system of units, SI, fundamental and derived units, dimensions and their applications.

b. MECHANICS

Motion in straight line, uniform and non-uniform motion, uniformly accelerated motion and its applications Scalars and Vectors, and their properties; resolution of vectors, scalar and vector products; uniform circular motion and its applications, projectile motion Newton’s Laws of motion;  conservation of linear momentum and its applications, laws of friction, Concept of work, energy and power; energy-kinetic and potential;
conservation of energy; different forms of energy. Elastic collisions in one and two dimensions. Center of mass of a many particle system; center of mass of a rigid body, rotational motion and torque. Angular momentum and its conservation. Moments of inertia, parallel and perpendicular axes theorem,
moment of inertia for a thin rod, ring, disc and sphere.

Gravitation: Acceleration due to gravity and its properties. One and two dimensional motion under gravity. Universal law of gravitation, planetary motion, Kepler’s laws, artificial satellite-geostationary satellite, gravitational  potential energy near the surface of earth, gravitational potential and escape velocity.

c. SOLIDS AND FLUIDS
Solids: Elastic properties, Hooke’s law, Young’s modulus, bulk modulus, modulus of rigidity.Liquids: cohesion and adhesion; surface energy and surface tension; flow of fluids, Bernoulli’s theorem and its applications; viscosity, Stoke’s Law, terminal velocity.

(i) OSCILLATIONS AND WAVES

Periodic motion, simple harmonic motion and its equation, oscillations of a spring and simple pendulum. Wave motion, properties of waves, longitudinal and transverse waves, superposition of waves, Progressive and standing waves. Free and forced oscillations, resonance, vibration of strings and air columns, beats, Doppler effect.

(ii) HEAT AND THERMODYNAMICS

Thermal expansion of solids, liquids and gases and their specific heats, relationship between Cp and Cv for gases, first and second laws of  thermodynamics , Carnot cycle, efficiency of heat engines. Transference of heat; thermal conductivity; black body radiations, Kirchoff’s law, Wein’s Law, Stefan’s law of radiation and Newton’s law of cooling.

(iii) ELECTROSTATICS,CURRENT ELECTRICITY AND MAGNETOSTATICS

Coloumb’s law, dielectric constant, electric field, lines of force, field due to dipole , electric flux, Gauss’s  theorem and its applications; electric potential, potential due to a point charge; conductors and insulators, distribution of charge on conductors; capacitance, parallel plate capacitor, combination of capacitors, energy  stored in a capacitor.

Electric current : Cells-primary and secondary, grouping of cells; resistance and specific resistivity and its temperature dependence. Ohm’s law, Kirchoff’s Law. Series and parallel circuits; Wheatstone’s Bridge and potentiometer with their applications. Heating effects of current, electric power, concept of thermoelectricity-Seebeck effect and thermocouple; chemical effect of current- Faraday’s laws of electrolysis. Magnetic effects: Oersted’s experiment, Biot Savert’s law, magnetic field due to straight wire, circular loop and solenoid, force on a moving charge in a uniform magnetic field(Lorentz force),forces and torques on a current carrying conductor in a magnetic field, force between current carrying wires, moving coil galvanometer  and conversion to ammeter and voltmeter.

Magnetostatics: Bar magnet, magnetic field, lines of force, torque on a bar magnet in a magnetic field, earth’s magnetic field; para, dia and ferro magnetism, magnetic induction, magnetic susceptibility.

d. ELECTROMAGNETIC INDUCTION AND ELECTROMAGNETIC WAVES

Induced e.m.f., Faraday’s law, Lenz’s law, self and mutual inductance; alternating currents, impedance and reactance, power in ac; circuits with L C and R series combination, resonant circuits, transformer and AC generator. Electromagnetic waves and their characteristics; electromagnetic spectrum from gamma to radio waves.

e. RAY AND WAVE OPTICS
Reflection and refraction of light at plane and curved surfaces, total internal reflection; optical fiber; deviation and dispersion of light by a prism; lens formula, magnification and resolving power; microscope and telescope, Wave nature of light, interference, Young’s double experiment; thin films, Newton’s rings.

Diffraction: diffraction due to a single slit; diffraction grating, polarization and applications.

f. MODERN PHYSICS

Dual nature of Radiation – De Broglie relation, photoelectric effect, Alpha particle scattering experiment, atomic masses, size of the nucleus;  radioactivity, alpha, beta and gamma particles/rays. Radioactive decay law, half life and mean life of radio active nuclei; Nuclear binding energy, mass energy relationship, nuclear fission and nuclear fusion. Energy bands in solids, conductors, insulators and semiconductors, pn junction, diode, diode as a rectifier, transistor action, transistor as an amplifier.

AMRITA 2015 Mathematics Syllabus

MATHEMATICS 

a. Complex Numbers

Complex numbers in the form a+ib and their representation in a plane. Argand diagram. Algebra of complex numbers, Modulus and argument (or  amplitude) of a complex number, square root of a complex number. Cube roots of unity, triangle inequality.

b. Linear Inequalities

Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation on the number line.

c. Permutations and Combinations

Fundamental principle of counting; Permutation as an arrangement and combination as selection, Meaning of P(n,r)and C(n,r).Simple applications.

d. Binomial Theorem

Binomial theorem for positive integral indices. Pascal’s triangle. General and middle terms in binomial expansions, simple applications.

e. Sequences and Series  

Arithmetic, Geometric and Harmonic progressions. Insertion of Arithmetic, Geometric and Harmonic means  between two given numbers. Relation between A.M., G.M. and H.M. Arithmatic  Geometric Series, Exponential and Logarithmic Series.

f. Matrices and Determinants

Determinants and matrices of order two and three, Properties of determinants. Evaluation of determinants. Addition and multiplication of matrices, adjoint and inverse of matrix. Solution of simultaneous linear equations using determinants .

g. Quadratic Equations

Quadratic equations in real and complex number system and their solutions. Relation between roots and co-efficients, Nature of roots, formation of quadratic equations with given roots;

h. Relations and Functions

Definition of a relation. Domain, codomain and range of a relation. Function as special kind of relation and their domain, codomain and range. Real valued function of a real variable. Constant, identity, polynomial, rational. Modulus, signum and greatest integer functions. Sum. Difference, product and quotient of functions.  Types of relations: refelexive, symmetric, transitive and equivalence relations. One to one and onto functions.Composite functions, inverse of a function.

i. Trigonometry

Trigonometrical identities and equations. Inverse trigonometric functions and their properties. Properties of triangles, including centroid, incentre, circumcentre and orthocentre, solution of triangles. Heights and distances.

j. Measures of Central Tendency and Dispersion 

Calculation of Mean, Median and Mode of grouped and ungrouped data. Calculation of standard deviation, variance and mean deviation for grouped and ungrouped data.

k. Probability

Probability of an event, addition and multiplication theorems of probability and their applications; Conditional probability; Bayes’ theorem, Probability distribution of a random variate; Binomial and Poisson distributions and their properties.

l. Differential Calculus

Polynomials, rational, trigonometric, logarithmic and exponential functions. Graphs of simple functions. Limits, Continuity; differentiation of the sum, difference, product and quotient of two functions. Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives  of order upto two. Applications of derivatives: Maxima and Minima of functions one variable, tangents and normals, Rolle’s and Langrage’s Mean Value Theorems.

m. Integral Calculus

Integral as an anti derivative. Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions. Integration by substitution, by parts and by partial fractions. Integration using trigonometric  identities. Integral as a limit of sum. Properties of definite integrals. Evaluation of definite integral; Determining areas of the regions bounded by simple curves.

n. Differential Equations

Ordinary differential equations, their order and degree. Formation of differential equation. Solutions of differential  equations by the method of separation of variables. Solution of Homogeneous and linear differential equations.

o. Two Dimensional Geometry

Review of Cartesian system of rectangular co-ordinates in a plane, distance formula, area of triangle, condition for the collinearity of three points, slope of a line, parallel and perpendicular lines, intercepts of a line on the coordinate axes.

p. The straight line and pair of straight lines

Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurence  of three lines, distance of a point from a line .Equations of internal and external bisectors of angles between two lines, equation of family lines passing through the point of intersection of two lines, homogeneous  equation of second degree in x and y, angle between pair of lines through the origin, combined equation of the bisectors of the angles between a pair of lines, condition for the general second degree equation to represent a pair of lines, point of intersections and angles between two lines.

q. Circles and Family of Circles

Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation of a circle in the parametric form, equation of a circle when the end points of a diameter are given, points of intersection of a line and circle with the centre at the origin and condition for a line to be tangent, equation of a family of circles through the intersection of two circles, condition for two intersecting circles to be orthogonal.

r. Conic Sections

Sections of cones, equations of conic sections ( parabola, ellipse and hyperbola) in standard forms conditions for y = mx+c to be a tangent and point(s) of tangency.

s. Vector Algebra

Vector and scalars, addition of two vectors, components of a vector in two dimensions and three dimensional  space, scalar and vector products, scalar and vector triple product. Application of vectors to plane geometry.

t. Three Dimensional Geometry

Distance between two points. Direction cosines of a line joining two points. Cartesian and vector equation of a line. Coplanar and skew lines. Shortest distance between two lines.Cartesian and vector equation of a plane. Angle between (i) two lines (ii) two planes (iii) a line and a plane Distance of a point from a plane.

AMRITA 2015 Exam Centre

 

Sl. State No City / Town City
Code
1 Tamilnadu 1 Chennai 101
2 Coimbatore 102
3 Cuddalore 103
4 Dindigul 104
5 Erode 105
6 Hosur 106
7 Karur 107
8 Madurai 108
9 Nagercoil 109
10 Namakkal 110
11 Ooty 112
12 Pudukottai 113
13 Puducherry 114
14 Salem 115
15 Thanjavur 116
16 Tirunelveli 117
17 Tirupur 118
18 Trichy 119
19 Tuticorin 120
20 Vellore 121
2 Kerala 1 Alappuzha 201
2 Amritapur 202
3 Ernakulam 203
4 Kalpetta 204
5 Kannur 205
6 Kasaragod 206
7 Kollam 207
8 Kottayam 208
9 Kozhikode 209
10 Malappuram 210
11 Palakkad 211
12 Pathanamthitta 212
13 Thiruvananthapuram 213
14 Thrissur 214
15 Thodhupuzha 215
3 Karnataka 1 Belgaum 301
2 Bengaluru 302
3 Davangere 304
4 Hubli 306
5 Mangalore 308
6 Mysore 309
7 Raichur 310
8 Shimoga 311
9 Udupi 312
4 Andhra
Pradesh
1 Anantapur 401
2 Hyderabad 402
3 Kakinada 403
4 Nellore 404
5 Tirupati 405
6 Vijayawada 406
7 Vishakhapatnam 407
8 Cuddapah 408
9 Kurnool 409
10 Warangal 410
5 Assam 1 Guwahati 411
6 Bihar 1 Patna 416
7 Chandigarh 1 Chandigarh 421
8 Chhattisgarh 1 Raipur 426
9 Delhi 1 New Delhi 431
10 Goa 1 Panaji 436
11 Gujarat 1 Ahmedabad 441
2 Vadodara 442
12 Jharkhand 1 Ranchi 447
13 Madhya Pradesh 1 Bhopal 451
14 Maharashtra 1 Mumbai 456
2 Nagpur 457
3 Pune 458
15 Orissa 1 Bhubaneswar 461
16 Rajasthan 1 Jaipur 471
2 Kota 472
17 Uttaranchal 1 Dehra Dun 476
18 Uttarpradesh 1 Lucknow 481
2 Varanasi 482
19 West Bengal 1 Kolkatta 487
20 Andaman & Nicobar 1 Port Blair 491



 

Amrita 2015 Eligibility

 AMRITA Eligibility for 2015 Engineering Students:-

  •  Age: – Candidates shall be born on or after 1st July 1994.
  •  Educational Qualification: – A  pass in the final examination of 10+2 ( class XII ) or its equivalent securing 60% or above marks in Mathematics, Physics, Chemistry with not less than  55% mark  in each of these three subjects.

                                                                                 OR

  • A three year Diploma in Engineering with minimum 60% marks, awarded by any State Board of Technical Education.
  • Note: Those who appear for the above examinations in March / April 2014 and expect to secure minimum marks as above, may also apply.

Amrita 2015 Important Dates

 AMRITA UG 2015 Important Dates Shall be updated here-under during the month of November 2014.

Refer  AMRITA 2014 Important Dates :

Issue of Application forms begins 16 – 12 – 2013 (Monday)
Last date of issue of application forms 21 – 03 – 2014 (Friday)
Last date for receiving completed applications (OMR & On-line) 24 – 03 – 2014 (Monday)
Date of Entrance Examination 13- 04 – 2014 (Sunday)

AMRITA 2015 Exam Pattern

     AMRITA 2015 Exam Pattern : The duration of the Examination is 3 hours .
  • There will be only one question paper containing objective type questions in Mathematics, Physics and Chemistry.
  • Each question will be followed by four answers of which only one is correct / most appropriate.
  • The question booklet will be in English language.
  • Each question carries 3 marks. Negative mark (-1) will be awarded for each wrong answer.
  • AMRITA Engineering (UG) 2015 Exam will held through offline process only on 13-4-2015.

 Subject Combination: 

Subject Weightage Total No. of Questions Total Marks
Mathematics 50 questions 120 360
( 120 x 3 )
Physics 35 questions
Chemistry 35 questions

AMRITA Engineering (UG) 2014 Check List

Before mailing the application, please ensure that
. your name is written as per the 12th class records.
. full & correct mailing address is written. ( NRI’s shall give their address in India)
. your contact phone number (land phone & mobile phone) & Email ID are written correctly.
. you have used black ball point pen to write and HB pencil to darken the bubbles.
. you have mentioned correctly the city code of the examination centre, first and second choice.
. you have mentioned correctly the State code from where you have completed your 12th class.
. you have affixed a recent passport size colour photograph of good quality in the space provided.
. your photograph is not attested.
. you have signed in the space provided on the first page and second page of the Application Form.
. your parent / guardian has signed the declaration.
. you have not used any pin or staple on the application.
. you have retained a photocopy of the filled-in application form and DD for future reference.
. your application is to be despatched in the pre-addressed cover intended for sending the same
and is addressed to;
The Admission Co-ordinator
Amrita School of Engineering
Amrita Vishwa Vidyapeetham University
(P.O) Amritanagar, Ettimadai, Coimbatore – 641 112.
Tamilnadu.
Phone: 0422 – 2685000

AMRITA Engineering (UG) 2014 Important Notes

Please go through the following general information:
1. Please ensure that you are using the correct application form intended for Amrita Entrance Examination – Engineering 2014.
2. NRI candidates shall give their address in India for correspondence.
3. Ensure that you fulfill all the eligibility criteria given in section 3 of the Information Handbook.
4. Submit only one application form.
5. Your application must be complete in all respects. Incomplete applications are liable to be rejected.
6. Application forms will be machine processed. The machine will read only fully darkened bubbles.
Please see section 6 & 7 of the Information Handbook before filling the application form.
7. Options once selected in the application cannot be changed at a later date.
8. Completed application form shall be sent only to the address given in section 8 of the Information Handbook.
9. For Fee structure visit University website: www.amrita.edu
10.The application fee is not refundable.
11.The courts at Coimbatore shall have the jurisdiction to settle and decide all matters and disputes related to Amrita Entrance Examination – Engineering 2014.

AMRITA Engineering (UG) 2014 FAQs

AMRITA Engineering (UG) 2014 FAQs (Frequently Asked Questions) : 

Qn.- 1. What is the procedure to get admission for B.Tech. in Amrita University ?

Ans: A candidate should have a pass in 10+2 ( class XII ) or its equivalent securing an aggregate of 60% marks in Mathematics, Physics and Chemistry with not less than 55% marks in each of these three subjects (or) a three year Diploma in engineering with minimum 60% marks, awarded by any State Board of Technical Education and also should appear for Amrita Entrance Exam to be eligible to get admission based on his / her rank in the entrance exam. Age restrictions apply.

Qn.– 2. Can a candidate who has scored high rank in any other national or state entrance exam get direct admission in Amrita?

Ans : No. Only candidates who appeared for Amrita Entrance exam 2014 are eligible for admission.

Qn.– 3. Is Amrita Vishwa Vidyapeetham affiliated to any University for purpose of recognition of degrees?

Ans : No. Amrita Vishwa Vidyapeetham is a University established under sec 3 of UGC Act 1956. Being a University, the question of affiliation to another university does not arise. Since the university is recognized by UGC and Ministry of HRD, Govt. of India, the courses offered by Amrita University are recognized. The University is accredited by National Assessment and Accreditation Council ( NAAC ) with ‘A’ Grade in 2009. The HRD Ministry’s Panel Report(2010) on Deemed Universities has graded Amrita in Category ‘A’.

Qn.– 4. How is Amrita B.Tech.Programme designed?

Ans : Choice Based credit system with continuous evaluation is followed in semester pattern.

Qn.– 5. Is campus transfer possible after joining the B.Tech. programme in anyone of the Amrita campuses?

Ans : No. There is no provision for campus transfer.

Qn.– 6. How many students are presently studying in the University?

Ans: At present around 15,000 students are studying in the five campuses of the University.

Qn.– 7. Where should I attend the counselling for B.Tech. admission?

Ans : You can attend the counselling in any one of the three campuses at your convenience and opt any branch in any one of the three campuses according to the availability of seat at the time of your counselling.

Qn.– 8. At the time of counselling, is the presence of candidate compulsory?

Ans : Yes, the candidate along with his parent or guardian shall be present at the counselling desk.

Qn.– 9. If I do not receive call letter in time to attend the counselling, what can I do?

Ans : The rank list and counselling schedule will be published in the university website. Candidates who do not get the intimation letter shall check the website and if their rank is included for counselling, they may attend the counselling with all their original certificates as specified. Moreover they may contact the university office in this regard before the date of counselling. (Ph : 0422 2685169/170)

Qn.– 10.In XII class exam my average marks for Physics, Chemistry and Mathematics is above 60% but in Physics the score is less than 55%. Can I attend the counselling?

Ans : No. You should get 55% or more in Mathematics, Physics and Chemistry each together with 60% aggregate in these three subjects.

 

AMRITA Engineering (UG) 2014 General Instructions

AMRITA Engineering (UG) 2014 General Instructions for the students :-

  • Sealed question booklet will be in 4 versions A, B, C & D. The version code of the question booklet, the number of pages and question booklet number will be printed on the front page of the question booklet.
  • Using blue / black ball point pen, candidate shall write his / her name, registration number and signature in the spaces provided in the question booklet.
  • Answer sheet :  An OMR answer sheet is used for marking the answers. Specimen of the OMR answer sheet .
  • Distribution of Question Booklet and Answer Sheet :  Question booklet and coded answer sheet will be distributed in the examination hall 15 minutes before the actual time of commencement of examination, so that the candidates shall have sufficient time to read the instructions and fill up the required information on question booklet and answer sheet.
  • Important Points to note :   The candidate should not do any rough work on the answer sheet. All rough work should be done in the space provided for the purpose in the question booklet.
  • Extra care is needed while handling the coded answer sheet in the following respects.
  • DO NOT: (i) pin or staple (ii) punch or tag (iii) make hole anywhere (iv) wet or soil (v) tear or mutilate (vi) wrinkle or fold the coded answer sheet.

AMRITA Engineering (UG) 2014 OMR Sheet

(a) Use the OMR answer sheet carefully ; no spare sheet will be issued under any circumstance.

(b) Do not fold or make any stray mark on the OMR Sheet.

(c) Use HB pencil or Blue / Black  ball point pen shading the bubbles and use ball point pen for writing.

(d) In the OMR answer sheet , make the following entries

1) write the Registration Number, Question Booklet Number and Question Booklet Version code using ball point pen.

2) Fill the oval corresponding to the  Registration number, Question Booklet Number and Question Booklet Version code using HB pencil/Ball point pen.

3) Write your Name and Signature  using ball point pen.

(e) Rough work should not be done on the Answer Sheet.

AMRITA Engineering (UG) 2014 Updates

AMRITA Engineering (UG) 2014 Information Updates :

  1. AMRITA Engineering (UG) 2014 OMR Sheet
  2. AMRITA Engineering (UG) 2014 General Instructions
  3. AMRITA Engineering (UG) 2014 FAQs
  4. AMRITA Engineering (UG) 2014 Important Notes
  5. AMRITA Engineering (UG) 2014 Check List

AMRITA Engineering (UG) 2014 Exam Centre

  • Entrance examination will be conducted in schools / colleges situated in major cities / towns throughout India.
  • Examination will be conducted in a centre only if there are sufficient candidates.

 

Sl State No City / Town City
Code
No City / Town City
Code
1 Tamilnadu 1 Chennai 101 11 Ooty 112
2 Coimbatore 102 12 Pudukottai 113
3 Cuddalore 103 13 Puducherry 114
4 Dindigul 104 14 Salem 115
5 Erode 105 15 Thanjavur 116
6 Hosur 106 16 Tirunelveli 117
7 Karur 107 17 Tirupur 118
8 Madurai 108 18 Trichy 119
9 Nagercoil 109 19 Tuticorin 120
10 Namakkal 110 20 Vellore 121
2 Kerala 1 Alappuzha 201 9 Kozhikode 209
2 Amritapur 202 10 Malappuram 210
3 Ernakulam 203 11 Palakkad 211
4 Kalpetta 204 12 Pathanamthitta 212
5 Kannur 205 13 Thiruvananthapuram 213
6 Kasaragod 206 14 Thrissur 214
7 Kollam 207 15 Thodhupuzha 215
8 Kottayam 208
3 Karnataka 1 Belgaum 301 7 Raichur 310
2 Bengaluru 302 8 Shimoga 311
3 Davangere 304 9 Udupi 312
4 Hubli 306
5 Mangalore 308
6 Mysore 309
4 Andhra
Pradesh
1 Anantapur 401 5 Tirupati 405
2 Hyderabad 402 6 Vijayawada 406
3 Kakinada 403 7 Vishakhapatnam 407
4 Nellore 404 8 Cuddapah 408
9 Kurnool 409
10 Warangal 410
5 Assam 1 Guwahati 411
6 Bihar 1 Patna 416
7 Chandigarh 1 Chandigarh 421
8 Chhattisgarh 1 Raipur 426
9 Delhi 1 New Delhi 431
10 Goa 1 Panaji 436
11 Gujarat 1 Ahmedabad 441 2 Vadodara 442
12 Jharkhand 1 Ranchi 447
13 Madhya Pradesh 1 Bhopal 451
14 Maharashtra 1 Mumbai 456 2 Nagpur 457
3 Pune 458
15 Orissa 1 Bhubaneswar 461
16 Rajasthan 1 Jaipur 471 2 Kota 472
17 Uttaranchal 1 Dehra Dun 476
18 Uttarpradesh 1 Lucknow 481 2 Varanasi 482
19 West Bengal 1 Kolkatta 487
20 Andaman &
Nicobar
1 Port Blair 491
Related links AMRITA Engineering (UG) 2014 :-



 

AMRITA Engineering 2014 Chemistry Syllabus

AMRITA Engineering 2014 Chemistry Syllabus for Under Graduate Students :

CHEMISTRY

a. BASIC CONCEPTS

Atomic and molecular masses, mole concept and molar mass, percentage composition, empirical and molecular formula, chemical reactions, stoichiometry and calculations based on stoichiometry.

b. ATOMIC STRUCTURE, CHEMICAL BONDING AND MOLECULAR STRUCTURE

Bohr’s model, de Broglie’s and Heisenberg’s principles, Quantum mechanical model, Orbital concept and filling up of electrons; Bond formation and bond parameters; Valence bond and molecular orbital theory; VSEPR theory; Hybridization involving s, p and d orbital; Hydrogen bond.

c. EQUILIBRIUM AND THERMODYNAMICS

Law of chemical equilibrium and Equilibrium Constant; Homogeneous and Heterogeneous equilibria; LeChatelier’s principle, Ionic equilibrium; Acids, Bases, Salts and Buffers; Solubility product; Thermodynamic state; Enthalpy, Entropy and Gibb’s free energy; Heats of reactions; Spontaneous and non- spontaneous processes.

d. ELECTROCHEMISTRY, KINETICS AND SURFACE CHEMISTRY

Specific, molar and equivalent conductance of weak and strong electrolytes; Kohlrausch law; Electrochemi cal cells and Nernst equation; batteries, fuel cells and corrosion Rate of a reaction and factors affecting the rate: Rate constant, order and molecularity, collision theory. Physisorption and chemisorptions; colloids and emulsions; homogeneous and heterogeneous catalysis.

e. SOLID STATE AND SOLUTIONS

Molecular, ionic, covalent and metallic solids; amorphous and crystalline solids; crystal lattices and Unit cells; packing efficiency and imperfections; electrical and magnetic properties. Normality, molarity and molality of solutions, vapour pressure of liquid solutions; ideal and non-ideal solutions, colligative properties  abnormality.

f. HYDROGEN

Position of hydrogen in the periodic table; dihydrogen and hydrides- preparation and properties; water, hydrogen peroxide and heavy water; hydrogen as a fuel.

g. S – BLOCK ELEMENTS

Group 1 and 2 Alkali and Alkaline earth elements; general characteristics of compounds of the elements; anomalous behavior of the first element; preparation and properties of compounds like sodium and calcium carbonates, sodium chloride, sodium hydroxide; biological importance of sodium, potassium and calcium.

h. P – BLOCK ELEMENTS

Groups 13 to 17 elements: General aspects like electronic configuration, occurrence, oxidation states, trends in physical and chemical properties of all the families of elements; compounds of boron like borax, boron hydrides and allotropes of carbon; compounds of nitrogen and phosphorus, oxygen and sulphur; oxides and oxyacids of halogens.

i. D, F – BLOCK ELEMENTS

Electronic configuration and general characteristics of transition metals; ionization enthalpy, ionic radii, oxidations states and magnetic properties; interstitial compounds and alloy formation; lanthanides and actinoids and their applications.

j. CO-ORDINATION COMPOUNDS

Werner’s theory and IUPAC nomenclature of coordination compounds; coordination number and isomerism;  Bonding in coordination compounds and metal carbonyls and stability; application in analytical  methods, extraction of metals and biological systems.

k. BASIC ORGANIC CHEMISTRY AND TECHNIQUES
Tetravalence of carbon and shapes or organic compounds; electronic displacement in a covalent bond-inductive  and electromeric effects, resonance and hyperconjugation; hemolytic and heterolytic cleavage of covalent bond – free radicals, carbocations, carbanions electrophiles and nucleophiles; methods of purification of organic compounds; qualitative and quantitative analysis.

l. HYDROCARBONS, HALOALKANES AND HALOARENES

Alkanes, alkenes,alkynes and aromatic hydrocarbons; IUPAC nomenclature, isomerism; conformation of ethane, geometric isomerism, general methods of preparation and properties, free radical mechanism of halogenations, Markownikoff’s addition and peroxide effect; benzene, resonance and aromaticity, substitution reactions; Nature of C-X bond in haloalkanes and haloarenes; mechanism of substitution reactions

m. ALCOHOLS, PHENOLS AND ETHERS

IUPAC nomenclature, general methods of preparation, physical and chemical properties, identification of primary, secondary and tertiary alcohols, mechanism of dehydration; electrophillic substitution reactions.

n. ALDEHYDES, KETONES, CARBOXYLIC ACIDS AND AMINES

Nomenclature, general methods of preparation, physical and chemical properties of the group members; nucleophilic addition and its mechanism; reactivity of alpha hydrogen in aldehydes; mono and dicarboxylic acids-preparation and reactions; identification of primary, secondary and tertiary amines; preparation and reactions of diazonium salts and their importance in synthesis.

o. POLYMERS AND BIOMOLECULES

Natural and synthetic polymers, methods of polymerization, copolymerization, molecular weight of polymers,  Polymers of commercial  importance, Carbohydrates: mono, oligo and polysaccharides; Proteins Alpha amino acid, peptide linkage and polypeptides: Enzymes, Vitamins and Nucleic acids (DNA and RNA)

p. ENVIRONMENTAL CHEMISTRY

Air, water and soil pollution, chemical reactions in atmosphere, acid rain; ozone and its depletion; green house effect and global warming; pollution control.

q. CHEMISTRY IN EVERYDAY LIFE

Drugs and their interaction; chemicals as analgesics, tranquilizers, antiseptics, antibiotics, antacids and antihistamines; Chemicals in food-  preservatives , artificial sweetening agents; cleansing agents – soaps and detergents.

AMRITA Engineering (UG) 2014 Physics Syllabus

PHYSICS

a. UNITS AND DIMENSIONS

Units for measurement, system of units, SI, fundamental and derived units, dimensions and their applications.

b. MECHANICS

Motion in straight line, uniform and non-uniform motion, uniformly accelerated motion and its applications Scalars and Vectors, and their properties; resolution of vectors, scalar and vector products; uniform circular motion and its applications, projectile motion Newton’s Laws of motion;  conservation of linear momentum and its applications, laws of friction, Concept of work, energy and power; energy-kinetic and potential;
conservation of energy; different forms of energy. Elastic collisions in one and two dimensions. Center of mass of a many particle system; center of mass of a rigid body, rotational motion and torque. Angular momentum and its conservation. Moments of inertia, parallel and perpendicular axes theorem,
moment of inertia for a thin rod, ring, disc and sphere.

Gravitation: Acceleration due to gravity and its properties. One and two dimensional motion under gravity. Universal law of gravitation, planetary motion, Kepler’s laws, artificial satellite-geostationary satellite, gravitational  potential energy near the surface of earth, gravitational potential and escape velocity.

c. SOLIDS AND FLUIDS
Solids: Elastic properties, Hooke’s law, Young’s modulus, bulk modulus, modulus of rigidity.Liquids: cohesion and adhesion; surface energy and surface tension; flow of fluids, Bernoulli’s theorem and its applications; viscosity, Stoke’s Law, terminal velocity.

(i) OSCILLATIONS AND WAVES

Periodic motion, simple harmonic motion and its equation, oscillations of a spring and simple pendulum. Wave motion, properties of waves, longitudinal and transverse waves, superposition of waves, Progressive and standing waves. Free and forced oscillations, resonance, vibration of strings and air columns, beats, Doppler effect.

(ii) HEAT AND THERMODYNAMICS

Thermal expansion of solids, liquids and gases and their specific heats, relationship between Cp and Cv for gases, first and second laws of  thermodynamics , Carnot cycle, efficiency of heat engines. Transference of heat; thermal conductivity; black body radiations, Kirchoff’s law, Wein’s Law, Stefan’s law of radiation and Newton’s law of cooling.

(iii) ELECTROSTATICS,CURRENT ELECTRICITY AND MAGNETOSTATICS

Coloumb’s law, dielectric constant, electric field, lines of force, field due to dipole , electric flux, Gauss’s  theorem and its applications; electric potential, potential due to a point charge; conductors and insulators, distribution of charge on conductors; capacitance, parallel plate capacitor, combination of capacitors, energy  stored in a capacitor.

Electric current : Cells-primary and secondary, grouping of cells; resistance and specific resistivity and its temperature dependence. Ohm’s law, Kirchoff’s Law. Series and parallel circuits; Wheatstone’s Bridge and potentiometer with their applications. Heating effects of current, electric power, concept of thermoelectricity-Seebeck effect and thermocouple; chemical effect of current- Faraday’s laws of electrolysis. Magnetic effects: Oersted’s experiment, Biot Savert’s law, magnetic field due to straight wire, circular loop and solenoid, force on a moving charge in a uniform magnetic field(Lorentz force),forces and torques on a current carrying conductor in a magnetic field, force between current carrying wires, moving coil galvanometer  and conversion to ammeter and voltmeter.

Magnetostatics: Bar magnet, magnetic field, lines of force, torque on a bar magnet in a magnetic field, earth’s magnetic field; para, dia and ferro magnetism, magnetic induction, magnetic susceptibility.

d. ELECTROMAGNETIC INDUCTION AND ELECTROMAGNETIC WAVES

Induced e.m.f., Faraday’s law, Lenz’s law, self and mutual inductance; alternating currents, impedance and reactance, power in ac; circuits with L C and R series combination, resonant circuits, transformer and AC generator. Electromagnetic waves and their characteristics; electromagnetic spectrum from gamma to radio waves.

e. RAY AND WAVE OPTICS
Reflection and refraction of light at plane and curved surfaces, total internal reflection; optical fiber; deviation and dispersion of light by a prism; lens formula, magnification and resolving power; microscope and telescope, Wave nature of light, interference, Young’s double experiment; thin films, Newton’s rings.

Diffraction: diffraction due to a single slit; diffraction grating, polarization and applications.

f. MODERN PHYSICS

Dual nature of Radiation – De Broglie relation, photoelectric effect, Alpha particle scattering experiment, atomic masses, size of the nucleus;  radioactivity, alpha, beta and gamma particles/rays. Radioactive decay law, half life and mean life of radio active nuclei; Nuclear binding energy, mass energy relationship, nuclear fission and nuclear fusion. Energy bands in solids, conductors, insulators and semiconductors, pn junction, diode, diode as a rectifier, transistor action, transistor as an amplifier.

AMRITA Engineering (UG) 2014 Mathematics Syllabus

MATHEMATICS

a. Complex Numbers

Complex numbers in the form a+ib and their representation in a plane. Argand diagram. Algebra of complex numbers, Modulus and argument (or  amplitude) of a complex number, square root of a complex number. Cube roots of unity, triangle inequality.

b. Linear Inequalities

Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation on the number line.

c. Permutations and Combinations

Fundamental principle of counting; Permutation as an arrangement and combination as selection, Meaning of P(n,r)and C(n,r).Simple applications.

d. Binomial Theorem

Binomial theorem for positive integral indices. Pascal’s triangle. General and middle terms in binomial expansions, simple applications.

e. Sequences and Series  

Arithmetic, Geometric and Harmonic progressions. Insertion of Arithmetic, Geometric and Harmonic means  between two given numbers. Relation between A.M., G.M. and H.M. Arithmatic  Geometric Series, Exponential and Logarithmic Series.

f. Matrices and Determinants

Determinants and matrices of order two and three, Properties of determinants. Evaluation of determinants. Addition and multiplication of matrices, adjoint and inverse of matrix. Solution of simultaneous linear equations using determinants .

g. Quadratic Equations

Quadratic equations in real and complex number system and their solutions. Relation between roots and co-efficients, Nature of roots, formation of quadratic equations with given roots;

h. Relations and Functions

Definition of a relation. Domain, codomain and range of a relation. Function as special kind of relation and their domain, codomain and range. Real valued function of a real variable. Constant, identity, polynomial, rational. Modulus, signum and greatest integer functions. Sum. Difference, product and quotient of functions.  Types of relations: refelexive, symmetric, transitive and equivalence relations. One to one and onto functions.Composite functions, inverse of a function.

i. Trigonometry

Trigonometrical identities and equations. Inverse trigonometric functions and their properties. Properties of triangles, including centroid, incentre, circumcentre and orthocentre, solution of triangles. Heights and distances.

j. Measures of Central Tendency and Dispersion 

Calculation of Mean, Median and Mode of grouped and ungrouped data. Calculation of standard deviation, variance and mean deviation for grouped and ungrouped data.

k. Probability

Probability of an event, addition and multiplication theorems of probability and their applications; Conditional probability; Bayes’ theorem, Probability distribution of a random variate; Binomial and Poisson distributions and their properties.

l. Differential Calculus

Polynomials, rational, trigonometric, logarithmic and exponential functions. Graphs of simple functions. Limits, Continuity; differentiation of the sum, difference, product and quotient of two functions. Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives  of order upto two. Applications of derivatives: Maxima and Minima of functions one variable, tangents and normals, Rolle’s and Langrage’s Mean Value Theorems.

m. Integral Calculus

Integral as an anti derivative. Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions. Integration by substitution, by parts and by partial fractions. Integration using trigonometric  identities. Integral as a limit of sum. Properties of definite integrals. Evaluation of definite integral; Determining areas of the regions bounded by simple curves.

n. Differential Equations

Ordinary differential equations, their order and degree. Formation of differential equation. Solutions of differential  equations by the method of separation of variables. Solution of Homogeneous and linear differential equations.

o. Two Dimensional Geometry

Review of Cartesian system of rectangular co-ordinates in a plane, distance formula, area of triangle, condition for the collinearity of three points, slope of a line, parallel and perpendicular lines, intercepts of a line on the coordinate axes.

p. The straight line and pair of straight lines

Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurence  of three lines, distance of a point from a line .Equations of internal and external bisectors of angles between two lines, equation of family lines passing through the point of intersection of two lines, homogeneous  equation of second degree in x and y, angle between pair of lines through the origin, combined equation of the bisectors of the angles between a pair of lines, condition for the general second degree equation to represent a pair of lines, point of intersections and angles between two lines.

q. Circles and Family of Circles

Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation of a circle in the parametric form, equation of a circle when the end points of a diameter are given, points of intersection of a line and circle with the centre at the origin and condition for a line to be tangent, equation of a family of circles through the intersection of two circles, condition for two intersecting circles to be orthogonal.

r. Conic Sections

Sections of cones, equations of conic sections ( parabola, ellipse and hyperbola) in standard forms conditions for y = mx+c to be a tangent and point(s) of tangency.

s. Vector Algebra

Vector and scalars, addition of two vectors, components of a vector in two dimensions and three dimensional  space, scalar and vector products, scalar and vector triple product. Application of vectors to plane geometry.

t. Three Dimensional Geometry

Distance between two points. Direction cosines of a line joining two points. Cartesian and vector equation of a line. Coplanar and skew lines. Shortest distance between two lines.Cartesian and vector equation of a plane. Angle between (i) two lines (ii) two planes (iii) a line and a plane Distance of a point from a plane.

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur