ORGANIC CHEMISTRY
Organic Compounds Containing Halogens
General methods of preparation, properties and reactions; Nature of C-X bond;
Mechanisms of substitution reactions.
Uses; Environmental effects of chloroform & iodoform.
Exams Question Papers General Knowledge Election Directory
ORGANIC CHEMISTRY
General methods of preparation, properties and reactions; Nature of C-X bond;
Mechanisms of substitution reactions.
Uses; Environmental effects of chloroform & iodoform.
ORGANIC CHEMISTRY
Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions.
Alkanes – Conformations: Sawhorse and Newman projections (of ethane);
Mechanism of halogenation of alkanes.
Alkenes – Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff’s and peroxide effect); Ozonolysis and polymerization.
Alkynes – Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization.
Aromatic hydrocarbons – Nomenclature, benzene – structure and aromaticity;
Mechanism of electrophilic substitution: halogenation, nitration, Friedel – Craft’s alkylation and acylation, directive influence of functional group in monosubstituted benzene.
ORGANIC CHEMISTRY
Tetravalency of carbon; Shapes of simple molecules – hybridization (s and p);
Classification of organic compounds based on functional groups: – C = C – , – Ch C – and those containing halogens, oxygen, nitrogen and sulphur;
Homologous series; Isomerism – structural and stereoisomerism.
Nomenclature (Trivial and IUPAC)
Covalent bond fission – Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles.
Electronic displacement in a covalent bond – Inductive effect, electromeric effect, resonance and hyperconjugation.
ORGANIC CHEMISTRY
INORGANIC CHEMISTRY
INORGANIC CHEMISTRY
INORGANIC CHEMISTRY
INORGANIC CHEMISTRY
General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group.
Groupwise study of the p – block elements
Preparation, properties and uses of boron and aluminium; properties of boric acid, diborane, boron trifluoride, aluminium chloride and alums.
Allotropes of carbon, tendency for catenation; Structure & properties of silicates, and zeolites.
Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structure and uses of ammonia, nitric acid, phosphine and phosphorus halides, (PCl3, PCl5); Structures of oxides and oxoacids of phosphorus.
Preparation, properties, structures and uses of ozone; Allotropic forms of sulphur; Preparation, properties, structures and uses of sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.
Preparation, properties and uses of hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.
Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.
INORGANIC CHEMISTRY
Group – 1 and 2 Elements
General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships.
Preparation and properties of some important compounds – sodium carbonate and sodium hydroxide; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca.
INORGANIC CHEMISTRY
Position of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen; Physical and chemical properties of water and heavy water; Structure, preparation, reactions and uses of hydrogen peroxide; Hydrogen as a fuel.
INORGANIC CHEMISTRY
Modes of occurrence of elements in nature, minerals, ores; Steps involved in the extraction of metals – concentration, reduction (chemical and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals.
INORGANIC CHEMISTRY
Modem periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity.
PHYSICAL CHEMISTRY
Adsorption- Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids – Freundlich and Langmuir adsorption isotherms, adsorption from solutions.
Colloidal state – distinction among true solutions, colloids and suspensions, classification of colloids – lyophilic, lyophobic; multi molecular, macromolecular and associated colloids (micelles), preparation and properties of colloids –
Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation; Emulsions and their characteristics.
PHYSICAL CHEMISTRY
PHYSICAL CHEMISTRY
Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions.
Eectrolytic and metallic conduction, conductance in electrolytic solutions, specific and molar conductivities and their variation with concentration:
Kohlrausch’s law and its applications.
Electrochemical cells – Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half – cell and cell reactions, emf of a Galvanic cell and its measurement; Nernst equation and its applications; Relationship between cell potential and Gibbs’ energy change; Dry cell and lead accumulator; Fuel cells.
PHYSICAL CHEMISTRY
Meaning of equilibrium, concept of dynamic equilibrium.
Equilibria involving physical processes: Solid -liquid, liquid – gas and solid – gas
equilibria, Henry’s law, general characterics of equilibrium involving physical processes.
Equilibria involving chemical processes: Law of chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, significance of DG and DGo in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, effect of catalyst; Le Chatelier’s principle.
Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Br??nsted – Lowry and Lewis) and their ionization, acid – base equilibria (including multistage ionization) and ionization constants, ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions.
Different methods for expressing concentration of solution – molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult’s Law – Ideal and non-ideal solutions, vapour pressure – composition, plots for ideal and non-ideal solutions; Colligative properties of dilute solutions – relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance.
PHYSICAL CHEMISTRY
Fundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes.
First law of thermodynamics – Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hess’s law of constant heat summation;
Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization and solution.
Second law of thermodynamics; Spontaneity of processes; DS of the universe and DG of the system as criteria for spontaneity, Dgo (Standard Gibbs energy change) and equilibrium constant.
PHYSICAL CHEMISTRY
Kossel – Lewis approach to chemical bond formation, concept of ionic and covalent bonds.
Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy.
Covalent Bonding: Concept of electronegativity, Fajan’s rule, dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules.
Quantum mechanical approach to covalent bonding:Valencebond theory – Its important features, concept of hybridization involving s, p and d orbitals;
Resonance.
Molecular Orbital Theory – Its important features, LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, concept of bond order, bond length and bond energy.
Elementary idea of metallic bonding. Hydrogen bonding and its applications.
PHYSICAL CHEMISTRY
Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of hydrogen atom, Bohr model of hydrogen atom – its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr’s model; Dual nature of matter, de-Broglie’s relationship, Heisenberg uncertainty principle. Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features, ?? and ??2, concept of atomic orbitals as one electron wave functions; Variation of ?? and ??2 with r for 1s and 2s orbitals; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s, p and d – orbitals, electron spin and spin quantum number; Rules for filling electrons in orbitals – aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.