Imtiyaz Murtaza

Name Hon’ble Mr. Justice Imtiyaz Murtaza
Address Guest House, Suit No.4, 2-Drummond Rd., Alld.

178/152, Badri Nath Road, Gola Ganj, Lko.

 
Administrative Judge for the District Bareilly
Source Bar
Posting Allahabad
Date of Birth 02/03/1953
Initial Joining 12/11/2001
Joining at Allahabad 12/11/2001
Date of Retirement 01/03/2015
Graduated in Law from University of Allahabad.
Enrolled as an advocate in the year 1980
Practised on Criminal side at Lucknow Bench of Allahabad High Court.
Elevated as permanent Judge on 12/11/2001.
E-Mail ID : [email protected]

 

V.K. Chaturvedi

Name Hon’ble Mr. Justice V.K. Chaturvedi 
Address Plot No.21-B, Ashok Nagar, Allahabad  
Administrative Judge for the District Rae Bareli
Source Bar
Posting Allahabad
Date of Birth 10/09/1945
Initial Joining 26/03/1999
Joining at Allahabad 26/03/1999
Date of Retirement 09/09/2007
Enrolled as an Advocate in the year 1971.
Practiced at Agra and Ferozabad up to June, 1980. Shifted to Allahabad High Court in July, 1980 and built up a lucrative practice on the Criminal side. Also practiced in Constitutional branch of law.
Elevated as permanent Judge on 26/03/1999.
E-Mail ID : [email protected]

 

Rajesh Kumar Agrawal

Name Hon’ble Mr. Justice Rajesh Kumar Agrawal 
Address 28, Judges Bungalow, Drummond Rd., Alld.  
Administrative Judge for the District   Gautam Budh Nagar
Source Bar
Posting Allahabad
Date of Birth 05/05/1953
Initial Joining 05/02/1999
Joining at Allahabad 05/02/1999
Date of Retirement 04/05/2015
Graduated in Law from Allahabad University.
Enrolled as Advocate on 14-8-1976. Joined the chamber of his father Sri Raja Ram Agrawal, Senior Advocate and former Advocate General of U.P. on the Civil side and dealt with Constitutional, Company, Service, Educational and Taxation matters.
Worked as Standing Counsel of the Income Tax Department of the Government of India.
Served a number of corporations and institutions as their Standing Counsel. Was Joint Editor of U.P. Tax Cases.
Elevated as permanent Judge on 05/02/1999.
E-Mail ID : [email protected]

 

Sushil Harkauli

Name Hon’ble Mr. Justice Sushil Harkauli 
Address 5, Judges Bungalow, High Court, Allahabad.  
Administrative Judge for the District Ghaziabad
Source Bar
Posting Allahabad
Date of Birth 02/08/1951
Initial Joining 05/02/1999
Joining at Allahabad 05/02/1999
Date of Retirement 01/08/2013
Graduated Law from Allahabad University.
Enrolled as an advocate in 1976.
Practised on Civil, Constitutional, Company, Testamentary, Matrimonial Arbitration and Criminal sides at the Allahabad High Court.
Served as Counsel for the U.P. Bar Council, U.P. Judicial Services Association, U.P. Govt. Counsel (Crl.) Welfare Association, Central Govt. and a large number of public and private organizations. Appreciated for his ability and fairness as a lawyer in several reported judgments, the earliest being AIR 1979 All 287 (para 6).
Elevated as permanent Judge on 05/02/1999.
E-Mail ID : [email protected]

 

Vijai Manohar Sahai

Name Hon’ble Mr. Justice Vijay Manohar Sahai 
Address 10, Judges Bungalow, High Court, Allahabad.
Administrative Judge for the District Meerut
Source Bar
Posting Allahabad
Date of Birth 13/08/1953
Initial Joining 05/02/1999
Joining at Allahabad 05/02/1999
Date of Retirement 12/08/2015
Graduated in Law from the University of Allahabad in 1975.
Enrolled as an advocate in January, 1976. Started practice in the chambers of his father Sri R.M. Sahai, who retired as Judge, Supreme Court of India in 1995.
Practised mainly on Civil, Tax, Revenue and Constitutional sides.
Worked as Brief Holder for the State of U.P. from 1983 to 1989. Appointed Standing Counsel for the; Public Service Commission, U.P., Allahabad, Ghaziabad Development Authority, Uttar Pradesh State Road Transport Corporation, U.P. State Electricity Board, The New India Assurance Co., Union Bank of India and Allahabad Bank.
Elevated as permanent Judge on 05/02/1999.
E-Mail ID : [email protected]

 

VITEEE 2017 Biology Syllabus

PART – IV- BIOLOGY

1. Taxonomy

Need for classification; three domains of life. Linnaean, Whittaker, Bentham and Hooker systems of classification. Salient features of non-chordates up to phyla levels and chordates up to class levels.

2. Cell and Molecular Biology

Cell theory. Prokaryotic cell and it’s ultrastructure. Eukaryotic cell- cell wall, cell membrane, cytoskeleton, nucleus, chloroplast, mitochondria, endoplasmic reticulum, Golgi bodies, ribosomes, lysosomes, vacuoles and centrosomes. Cell cycle and division – amitosis, mitosis and meiosis. Search for genetic material; structure of DNA and RNA; replication, transcription, genetic code, translation, splicing, gene expression and regulation (lac operon) and DNA repair.

3. Reproduction

Asexual reproduction – binary fission, sporulation, budding, gemmule formation and fragmentation. Vegetative propagation in plants, sexual reproduction in flowering plants and structure of flowers. Pollination, fertilization, development of seeds and fruits, seed dispersal, apomixis, parthenocarpy and polyembryony. Human reproductive system. Gametogenesis, menstrual cycle, ferti lization, implantation, embryo development upto blastocyst formation, pregnancy, parturition and lactation. Assisted reproductive technologies.

4. Genetics and evolution

Chromosomes – structure and types, linkage and crossing over, recombination of chromosomes, mutation and chromosomal aberrations. Mendelian inheritance, chromosomal theory of inheritance, deviation from Mendelian ratio (incomplete dominance, co-dominance, multiple allelism, pleiotrophy), sex linked inheritance and sex determination in humans. Darwinism, neo Darwinism, Hardy and Weinberg’s principle and factors affecting the equilibrium: selection, mutation, migration and random genetic drift.

5. Human health and diseases

Pathogens, parasites causing human diseases (malaria, dengue, chickengunia, filariasis, ascariasis, typhoid, pneumonia, common cold, amoebiasis, ring worm) and their control. Basic concepts of immunology, vaccines, antibiotics, cancer, HIV and AIDS. Adolescence, drug and alcohol abuse.

6. Biochemistry

Structure and function of carbohydrates, lipids and proteins. Enzymes – types, properties and enzyme action. Metabolism – glycolysis, Kreb’s cycle and pentose phosphate pathway.

7. Plant physiology

Movement of water, food, nutrients, gases and minerals. Passive diffusion, facilitated diffusion, and active transport. Imbibition, osmosis, apoplast and symplast transport and guttation. Transpiration, photosynthesis (light and dark reactions) and electron transport chain. Hormones and growth regulators, photo-periodism and vernalization. Nitrogen cycle and biological nitrogen fixation.

8. Human physiology

Digestion and absorption, breathing and respiration, body fluids and circulation, excretory system, endocrine system, nervous system, skeletal and muscular systems. Locomotion and movement, growth, aging and death. Hormones – types of hormones, functions and disorders.

9. Biotechnology and its applications

Recombinant DNA technology, applications in health, agriculture and industries; genetically modified organisms; Human insulin, vaccine and antibiotic production. Stem cell technology and gene therapy. Apiculture and animal husbandry. Plant breeding, tissue culture, single cell protein, fortification, Bt crops and transgenic animals. Microbes in food processing, sewage treatment, waste management and energy generation. Biocontrol agents and biofertilizers. Bio-safety issues, biopiracy and patents.

10. Biodiversity, ecology and environment

Ecosystems: components, types, pyramids, nutrient cycles (carbon and phosphorous), ecological succession and energy flow in an ecosystem; Biodiversity – concepts, patterns, importance, conservation, hot spots, endangered organisms, extinction, Red data book, botanical gardens, national parks, sanctuaries, museums, biosphere reserves and Ramsar sites. Environmental issues: pollution and its control. Population attributes – growth, birth and death rate and age distribution.

VITEEE 2017 Mathematics Syllabus

PART – III – MATHEMATICS

1. Matrices and their Applications

Adjoint, inverse – properties, computation of inverses, solution of system of linear equations by matrix inversion method.

Rank of a matrix – elementary transformation on a matrix, consistency of a system of linear equations, Cramer’s rule, nonhomogeneous equations, homogeneous linear system and rank method.

Solution of linear programming problems (LPP) in two variables.

2. Trigonometry and Complex Numbers

Definition, range, domain, principal value branch, graphs of inverse trigonometric functions and their elementary properties.

Complex number system – conjugate, properties, ordered pair representation.

Modulus – properties, geometrical representation, polar form, principal value, conjugate, sum, difference, product, quotient, vector interpretation, solutions of polynomial equations, De Moivre’s theorem and its applications.

Roots of a complex number – nth roots, cube roots, fourth roots.

3. Analytical Geometry of two dimensions

Definition of a conic – general equation of a conic, classification with respect to the general equation of a conic, classification of conics with respect to eccentricity.

Equations of conic sections (parabola, ellipse and hyperbola) in standard forms and general forms- Directrix, Focus and Latusrectum – parametric form of conics and chords. – Tangents and normals – Cartesian form and parametric form- equation of chord of contact of tangents from a point (x1 ,y1) to all the above said curves.

Asymptotes, Rectangular hyperbola – Standard equation of a rectangular hyperbola.

4. Vector Algebra

Scalar Product – angle between two vectors, properties of scalar product, and applications of dot product. Vector product, right handed and left handed systems, properties of vector product, applications of cross product.

Product of three vectors – Scalar triple product, properties of scalar triple product, vector triple product, vector product of four vectors, scalar product of four vectors.

5. Analytical Geometry of Three Dimensions

Direction cosines – direction ratios – equation of a straight line passing through a given point and parallel to a given line, passing through two given points, angle between two lines.

Planes – equation of a plane, passing through a given point and perpendicular to a line, given the distance from the origin and unit normal, passing through a given point and parallel to two given lines, passing through two given points and parallel to a  given line, passing through three given non-collinear points, passing through the line of intersection of two given planes, the distance between a point and a plane, the plane which contains two given lines (co-planar lines), angle between a line and a plane.

Skew lines – shortest distance between two lines, condition for two lines to intersect, point of intersection, collinearity of three points.

Sphere – equation of the sphere whose centre and radius are given, equation of a sphere when the extremities of the diameter are given.

6. Differential Calculus

Limits, continuity and differentiability of functions – Derivative as a rate of change, velocity, acceleration, related rates, derivative as a measure of slope, tangent, normal and angle between curves.

Mean value theorem – Rolle’s Theorem, Lagrange Mean Value Theorem, Taylor’s and Maclaurin’s series, L’ Hospital’s Rule, stationary points, increasing, decreasing, maxima, minima, concavity, convexity and points of inflexion.

Errors and approximations – absolute, relative, percentage errors – curve tracing, partial derivatives, Euler’s theorem.

7. Integral Calculus and its Applications

Simple definite integrals – fundamental theorems of calculus, properties of definite integrals.

Reduction formulae – reduction formulae for ∫ sinn x dx and ∫ cosnn x dx, Bernoulli’s formula.

Area of bounded regions, length of the curve.

8. Differential Equations

Differential equations – formation of differential equations, order and degree, solving differential equations (1st order), variables separable, homogeneous and linear equations.

Second order linear differential equations – second order linear differential equations with constant co-efficients, finding the particular integral if f(x) = emx, sin mx, cos mx, x, x2.

9. Probability Distributions

Probability – Axioms – Addition law – Conditional probability – Multiplicative law – Baye’s Theorem – Random variable – probability density function, distribution function, mathematical expectation, variance

Theoretical distributions – discrete distributions, Binomial, Poisson distributions- Continuous distri butions, Normal distribution.

10. Discrete Mathematics

Functions – Relations – Basics of counting.

Mathematical logic – logical statements, connectives, truth tables, logical equivalence, tautology, contradiction.

Groups-binary operations, semi groups, monoids, groups, order of a group, order of an element, properties of groups.

VITEEE 2017 Chemistry Syllabus

PART – II – CHEMISTRY

1. Atomic Structure

Bohr ’s atomic model-Sommerfeld’s extension of atomic structure; Electronic configuration and Quantum numbers; Shapes of s,p,d,f orbitals – Pauli’s exclusion principle – Hund’s Rule of maximum multiplicity- Aufbau principle. Emission spectrum, absorption spectrum, line spectra and band spectra; Hydrogen spectrum – Lyman, Balmer, Paschen, Brakett and Pfund series; deBroglie’s theory; Heisenberg’s uncertainty principle – wave nature of electron – Schrodinger wave equation (No derivation). Eigen values and eigen functions. Hybridization of atomic orbitals involving s,p,d orbitals.

2. p,d and f – Block Elements

p-block elements – Phosphorous compounds; PCl3, PCl5 – Oxides. Hydrogen halides, Inter halogen compounds. Xenon fluoride compounds. General Characteristics of d – block elements – Electronic Configuration – Oxidation states of first row transition elements and their colours. Occurrence and principles of extraction: Copper, Silver, Gold and Zinc. Preparation, properties of CuSO4, AgNO3 and K2Cr2O7.

Lanthanides – Introduction, electronic configuration, general characteristics, oxidation state – lanthanide contraction, uses, brief comparison of Lanthanides and Actinides.

3. Coordination Chemistry and Solid State Chemistry

Introduction – Terminology in coordination chemistry – IUPAC nomenclature of mononuclear coordination compounds. Isomerism, Geometrical isomerism in 4-coordinate, 6-coordinate complexes. Theories on coordination compounds – Werner’s theory (brief), Valence Bond theory. Uses of coordination compounds. Bioinorganic compounds (Haemoglobin and chlorophyll).

Lattice – unit cell, systems, types of crystals, packing in solids; Ionic crystals – Imperfections in solids – point defects. X-Ray diffraction – Electrical Property, Amorphous solids (elementary ideas only).

4. Thermodynamics, Chemical Equilibrium and Chemical Kinetics

I and II law of thermodynamics – spontaneous and non spontaneous processes, entropy, Gibb’s free energy – Free energy change and chemical equilibrium – significance of entropy.

Law of mass action – Le Chatlier’s principle, applications of chemical equilibrium. Rate expression, order and molecularity of reactions, zero order, first order and pseudo first order reaction – half life period. Determination of rate constant and order of reaction . Temperature dependence of rate constant – Arrhenius equation, activation energy.

5. Electrochemistry

Theory of electrical conductance; metallic and electrolytic conductance. Faraday’s laws – theory of strong electrolytes – Specific resistance, specific conductance, equivalent and molar conductance – Variation of conductance with di lution – Kohlrausch’s Law – Ionic product of water, pH and pOH – buffer solutions – use of pH values. Cells – Electrodes and electrode potentials – construction of cell and EMF values, Fuel cells, Corrosion and its prevention.

6. Isomerism in Organic Compounds

Definition, Classification – structural isomerism, stereo isomerism – geometrical and optical isomerism. Optical activitychirality – compounds containing chiral centres – R – S notation, D – L notation.

7. Alcohols and Ethers

Nomenclature of alcohols – Classification of alcohols – distinction between 10, 20 and 30 alcohols – General methods of preparation of primary alcohols, properties. Methods of preparation of dihydric alcohols: Glycol – Properties – Uses. Methods of preparation of trihydric alcohols – Properties – Uses. Aromatic alcohols – preparation and properties of phenols and benzyl alcohol.

Ethers – Nomenclature of ethers – general methods of preparation of aliphatic ethers – Properties – Uses. Aromatic ethers – Preparation of Anisole – Uses.

8. Carbonyl Compounds

Nomenclature of carbonyl compounds – Comparison of aldehydes and ketones. General methods of preparation of aldehydes – Properties – Uses. Aromatic aldehydes – Preparation of benzaldehyde – Properties and Uses. Ketones – general methods of preparation of aliphatic ketones (acetone) – Properties – Uses. Aromatic ketones – preparation of acetophenone – Properties – Uses, preparation of benzophenone – Properties. Name reactions; Clemmenson reduction, Wolff – Kishner reduction, Cannizzaro reaction, Claisen Schmidt reaction, Benzoin Condensation, aldol Condensation. Preparation and applications of Grignard reagents.

9. Carboxylic Acids and their derivatives

Nomenclature – Preparation of aliphatic monobarboxylic acids – formic acid – Properties – Uses. Monohydroxy mono carboxylic acids; Lactic acid – Synthesis of lactic acid. Aliphatic dicarboxylic acids; Preparation of oxalic and succinic acid. Aromatic acids; Benzoic and Salicylic acid – Properties – Uses. Derivatives of carboxylic acids; acetyl chloride (CH3COCl) – Preparation – Properties – Uses. Preparation of acetamide, Properties – acetic anhydride – Preparation, Properties. Preparation of esters – methyl acetate – Properties.

10. Organic Nitrogen Compounds and Biomolecules

Aliphatic nitro compounds – Preparation of aliphatic nitroalkanes – Properties – Uses. Aromatic nitro compounds – Preparation – Properties – Uses. Distinction between aliphatic and aromatic nitro compounds. Amines; aliphatic amines – General methods of preparation – Properties – Distinction between 10, 20 and 30 amines. Aromatic amines – Synthesis of benzylamine – Properties, Aniline – Preparation – Properties – Uses. Distinction between aliphatic and aromatic amine. Aliphatic nitriles – Preparation – properties – Uses. Diazonium salts – Preparation of benzene diazoniumchloride – Properties.

Carbohydrates – distinction between sugars and non sugars, structural formulae of glucose, fructose and sucrose, with their linkages, invert sugar – definition, examples of oligo and polysaccharides,

Amino acids – classification with examples, Peptides-properties of peptide bond,

Lipids – Definition, classification with examples, difference between fats, oils and waxes.

VITEEE 2017 Physics Syllabus

PART – I – PHYSICS

1.Laws of Motion & Work, Energy and Power

Law of conservation of linear momentum and its applications. Static and kinetic friction – laws of friction – rolling friction – lubrication.

Work done by a constant force and a variable force; kinetic energy – work-energy theorem – power.

Conservative forces: conservation of mechanical energy (kinetic and potential energies) – non-conservative forces: motion in a vertical circle – elastic and inelastic collisions in one and two dimensions.

2.Properties of Matter

Elastic behaviour – Stress-strain relationship – Hooke’s law – Young’s modulus – bulk modulus – shear modulus of rigidity – Poisson’s ratio – elastic energy. Viscosity – Stokes’ law – terminal velocity – streamline and turbulent flow – critical velocity. Bernoulli’s theorem and its applications.

Heat – temperature – thermal expansion: thermal expansion of solids – specific heat capacity: Cp, Cv – latent heat capacity. Qualitative ideas of Blackbody radiation: Wein’s displacement Law – Stefan’s law.

3.Electrostatics

Charges and their conservation; Coulomb’s law-forces between two point electric charges – Forces between multiple electric charges-superposition principle. Electric field – electric field due to a point charge, electric field lines; electric dipole, electric field intensity due to a dipole – behaviour of a dipole in a uniform electric field. Electric potential – potential difference-electric potential due to a point charge and dipole-equipotential surfaces – electrical potential energy of a system of two point charges.

Electric flux-Gauss’s theorem and its applications. Electrostatic induction-capacitor and capacitance – dielectric and electric polarisation – parallel plate capacitor with and without dielectric medium – applications of capacitor – energy stored in a capacitor – Capacitors in series and in parallel – action of points – Van de Graaff generator.

4.Current Electricity

Electric Current – flow of charges in a metallic conductor – drift velocity and mobility and their relation with electric current. Ohm’s law, electrical resistance – V-I characteristics – electrical resistivity and conductivity-classification of materials in terms of conductivity – Carbon resistors – colour code for carbon resistors – combination of resistors – series and parallel – temperature dependence of resistance – internal resistance of a cell – potential difference and emf of a cell – combinations of cells in series and in parallel.

Kirchoff ’s law – Wheatstone’s Bridge and its application for temperature coefficient of resistance measurement – Me t re br i dge – sp ec i a l cas e o f Wheats to n e br i dge – Potentiometer principle – comparing the emf of two cells.

5.Magnetic Effects of Electric Current
Magnetic effect of electric current – Concept of magnetic field – Oersted’s experiment – Biot – Savart law – Magnetic field due to an infinitely long current carrying straight wire and circular coil – Tangent galvanometer – construction and working – Bar magnet as an equivalent solenoid – magnetic field lines.

Ampere’s circuital law and its application. Force on a moving charge in uniform magnetic field and electric field – cyclotron – Force on current carrying conductor in a uniform magnetic field – Forces between two parallel current carrying conductors – definition of ampere.

Torque experienced by a current loop in a uniform magnetic field – moving coil galvanometer – conversion to ammeter and voltmeter – current loop as a magnetic dipole and its magnetic dipole moment – Magnetic dipole moment of a revolving electron.

6.Electromagnetic Induction and Alternating Current

Electromagnetic induction – Faraday’s law – induced emf and current – Lenz’s law. Self induction – Mutual induction – self inductance of a long solenoid – mutual inductance of two long solenoids. Methods of inducing emf – (i) by changing magnetic induction (ii) by changing area enclosed by the coil and (iii) by changing the orientation of the coil (quantitative treatment).

AC generator – commercial generator. (Single phase, three phase). Eddy current – applications – transformer – long distance transmission. Alternating current – measurement of AC – AC circuit with resistance – AC circuit with inductor – AC circuit with capacitor – LCR series circuit – Resonance and Q – factor – power in AC circuits.

7.Optics

Reflection of light, spherical mirrors, mirror formula. Refraction of light, total internal reflection and its applications, optical fibers, refraction at spherical surfaces, lenses, thin lens formula, lens maker ’s formula. Magnification, power of a lens, combination of thin lenses in contact, combination of a lens and a mirror. Refraction and dispersion of light through a prism. Scattering of light-blue colour of sky and reddish appearances of the sun at sunrise and sunset.

Wavefront and Huygens’s principle – Reflection, total internal reflection and refraction of plane wave at a plane surface using wavefronts. Interference – Young’s double slit experiment and expression for fringe width – coherent source – interference of light – Formation of colours in thin films – Newton’s rings. Diffraction – differences between interference and diffraction of light- diffraction grating. Polarisation of light waves – polarisation by reflection – Brewster’s law – double refraction – nicol prism – uses of plane polarised light and Polaroids – rotatory polarisation – polarimeter.

8.Dual Nature of Radiation and Atomic Physics

Electromagnetic waves and their characteristics – Electromagnetic spectrum – Photoelectric effect – Light waves and photons- Einstein’s photoelectric equation – laws of photoelectric emission – particle nature of light – photo cells and their applications.

Atomic structure – discovery of the electron – specific charge (Thomson’s method) and charge of the electron (Millikan’s oil drop method) – alpha scattering – Rutherford’s atom model.

9.Nuclear Physics

Nuclear properties – nuclear radii, masses, binding energy, density, charge – isotopes, isobars and isotones – nuclear mass defect – binding energy – stability of nuclei – Bainbridge mass spectrometer.

Nature of nuclear forces – Neutron – discovery – properties – artificial transmutation – particle accelerator. Radioactivity – alpha, beta and gamma radiations and their properties – Radioactive decay law – half life – mean life – artificial radioactivity – radio isotopes – effects and uses – Geiger – Muller counter. Radio carbon dating. Nuclear fission – chain reaction – atom bomb – nuclear reactor – nuclear fusion – Hydrogen bomb – cosmic rays – elementary particles.

10.Semiconductor Devices and their Applications

Semiconductor basics – energy band in solids: difference between metals, insulators and semiconductors – semiconductor doping – Intrinsic and Extrinsic semiconductors. Formation of P-N Junction – Barrier potential and depletion layer-P-N Junction diode – Forward and reverse bias characteristics – diode as a rectifier – Zener diode-Zener diode as a voltage regulator – LED. Junction transistors – characteristics – transistor as a switch – transistor as an amplifier – transistor as an oscillator.

Logic gates – NOT, OR, AND, EXOR using discrete components – NAND and NOR gates as universal gates – De Morgan’s theorem – Laws and theorems of Boolean algebra.

Vellore Institute of Technology Engineering Entrance Examination

VELLORE INSTITUTE OF TECHNOLOGY ENGINEERING ENTRANCE EXAMINATION

  Vellore Institute of Technology is one of the best University referred by the Ministry of Human Resources and Development. The campus of VIT is spread over an area of 250 acres with all world class amenities like Smart Classrooms, Multicuisine Restaurant, Auditoriums and Conference halls, Sports Club, Separate hostels for girls and boys and a well equipped infrastructure. The admissions to various disciplines in engineering course are conducted through Entrance Examination. The entrance examination is conducted for the following branches;Vellore Institute of Technology Engineering Entrance Examination (VITEEE)

  • Bio-Informatics
  • Biotechnology
  • Bio-Medical Engineering
  • Civil Engineering
  • Chemical Engineering
  • Computer Science and Engineering
  • Electronics and Communication Engineering
  • Electronics and Electrical Engineering
  • Electronics and Instrumentation Engineering
  • Information Technology
  • Mechanical Engineering
  • Mechanical and Energy Engineering

Eligibility

The age limit of the candidate must be 21 years or more. The candidate must have completed the 10th and 12th with a minimum aggregation of 60% in the subjects Physics, Chemistry and Mathematics/Biology in the State board or Central Board of Education. The SC/ST and other north region candidates must have 50% aggregate in all the subjects referred above. The candidates who are likely to prefer Biotechnology, Bio-Medical and Bio-Informatics must have taken Biology as their subject in the 12th board exam. For other disciplines, the candidate can take any subjects like Physics, Chemistry, Biology and Mathematics. Candidates who have studied full time, regular and formal education are eligible for Entrance exam. National Institute of Open Schooling candidates are also eligible for the entrance exam.

Exam Pattern

The exam consists of 125 multiple choice questions with two and half hours time duration. The Questions will be from Physics, Chemistry, Biology, Mathematics and English. Depending on the branch preferred the candidate have to answer biology or Mathematics paper. The Physics subject consists of 40 questions. The Chemistry subject consists of 40 questions. The Biology/Mathematics subject consists of 40 questions. The English paper consists of four questions. The questions are based on their higher secondary education syllabus. There is no penalty for wrong answer.

The selected candidates from entrance exam are called for counseling process. The candidates who are selected for the Counselling process must submit the original of the following documents;

  • E Admit card, VITEEE result card, Counselling admit card
  • Copy of Provisional Admission letter
  • 10th mark sheet or age proof certificate
  • Transfer Certificate
  • Migration Certificate/Conduct Certificate
  • Community Certificate (SC/ST candidates)
  • Nativity Certificate (for Northern State Candidates)
  • Photocopy of all the above certificates

After the counselling process, the commencement of classes are noticed at the official website of the University.

Syllabus

The syllabus is mainly from the Higher Secondary Education subjects. The exam is mainly conducted at the month of April of every year.

How to Apply

  • Log onto the official website
  • Fill all the mandatory details
  • Pay the fees for the exam using Net Banking, Credit or Debit cards
  • Select the test centre
  • Check the application
  • Submit the application
  • Take the printout for future reference

For offline submission

  • Fill the application form
  • Pay the fees using Bank Challan

Send the application to the address referred below;

Director

UG admission

VIT University, Vellore

EXAM FEES

UG entrance fees is Rs 975/-

International Transfer Programme

The VIT University has implemented a new International Transfer Programme for Under Graduate students. The students who are willing can study two years engineering Course in VIT campus, Vellore and the next two years the students can study in any foreign countries. The graduation will be provided by any Foreign University that have tie up with Partner Universities .The first batch for the programme will be commenced from the current year .The system established for the three main courses;

  • Computer Science and Engineering
  • Electrical Engineering
  • Mechanical Engineering

 

VITEEE 2015 Chemistry Syllabus

                                 Chemistry

Atomic Structure:

  • Bohr’s atomic model-Sommerfeld’s extension of atomic structure; Electronic configuration and Quantum numbers; Shapes of s,p,d,f orbitals – Pauli’s exclusion principle – Hund’s Rule of maximum multiplicity- Aufbau principle. Emission spectrum, absorption spectrum, line spectra and band spectra; Hydrogen spectrum – Lyman, Balmer, Poschen, Brakett and Pfund series; deBroglie’s theory; Heisenberg’s uncertainty principle – wave nature of electron – Schrodinger wave equation (No derivation). Eigen values and eigen functions. Hybridization of atomic orbitals involving s,p,d orbitals.

 p,d and f – Block Elements:

  • P block elements – Phosphorous compounds; PCl3, PCl5 – Oxides. Hydrogen halides, Inter halogen compounds. Xenon fluoride compounds. General Characteristics of d – block elements – Electronic Configuration – Oxidation states of first row transition elements and their colours; Occurrence and principles of extraction: Copper, Silver, Gold and Zinc. Preparation, properties of CuSO4, AgNO3 and K2Cr2O7. Lanthanides – Introduction, electronic configuration, general characteristics, oxidation state – lanthanide contraction, uses, brief comparison of Lanthanides and Actinides.

 Coordination Chemistry and Solid State Chemistry

  • Introduction – Terminology in coordination chemistry – IUPAC nomenclature of mononuclear coordination compounds. Isomerism, Geometrical isomerism in 4-coordinate, 6-coordinate complexes. Theories on coordination compounds – Werner’s theory (brief), Valence Bond theory. Uses of coordination compounds. Bioinorganic compounds (Hemoglobin  and chlorophyll). Lattice – unit cell, systems, types of crystals, packing in solids; Ionic crystals – Imperfections in solids – point defects. X-Ray diffraction – Electrical Property, Amorphous solids (elementary  ideas only).

 Thermodynamics, Chemical Equilibrium and Chemical Kinetics

  • I and II law of thermodynamics – Spontaneous and non spontaneous processes, entropy, Gibb’s free energy – Free energy change and chemical equilibrium – significance of entropy. Law of mass action – Le Chatlier’s principle, applications of chemical equilibrium. Rate expression, order and molecularity of reactions, zero order, first order and pseudo first reaction – half life period. Determination of rate constant and order of reaction Temperature dependence of rate constant – Arrhenius equation, activation energy.

Electrochemistry

  • Theory of electrical conductance; metallic and electrolytic conductance. Faraday’s laws – theory of strong electrolytes – Specific resistance, specific conductance, equivalent and molar conductance – Variation of conductance with dilution – Kohlraush’s law – Ionic product of  water, pH and pOH – buffer solutions – use of pH values. Cells – Electrodes and electrode potentials – construction of cell and EMF values, Fuel cells, Corrosion and its prevention.

Isomerism in Organic Compounds

  • Definition, Classification – structural isomerism, stereo isomerism – geometrical and optical isomerism. Optical activity- chirality – compounds containing chiral centres – R – S notation, D – L notation.

Alcohols and Ethers

  • Nomenclature of alcohols – Classification of alcohols – distinction between 10, 20 and 30 alcohols – General methods of preparation of primary alcohols, properties. Methods of preparation of dihydric alcohols: Glycol – Properties – Uses. Methods of preparation of trihydric alcohols – properties – uses. Aromatic alcohols – preparation and properties of phenols and benzyl alcohol. Ethers – Nomenclature of ethers – general methods of preparation of aliphatic ethers – Properties – Uses. Aromatic ethers – Preparation of Anisole – Uses.

Carbonyl Compounds

  • Nomenclature of carbonyl compounds – Comparison of aldehydes and ketones. General methods of preparation of aldehydes – Properties – Uses. Aromatic aldehydes – Preparation of benzaldehyde – Properties and Uses. Ketones – general methods of preparation of aliphatic ketones (acetone) – Properties – Uses. Aromatic ketones – preparation of acetophenone – Properties – Uses, preparation of benzophenone – Properties. Name reactions; Clemmenson reduction, wolff – kishner reduction, cannizaro reaction, Claisen Schmidt reaction, Benzoin Condensation, aldol Condensation. Preparation and applications of Grignard reagents.

Carboxylic Acids and their derivatives

  • Nomenclature – Preparation of aliphatic monobarboxylic acids – formic acid – Properties – Uses. Monohydroxy mono carboxylic acids; Lactic acid – synthesis of lactic acid. Aliphatic dicarboxylic acids; Preparation of oxalic and succinic acid. Aromatic acids; Benzoic and Salicylic acid – Properties – Uses. Derivatives of carboxylic acids; acetyl chloride (CH3COCl) – Preparation – Properties – Uses. Preparation of acetamide, Properties – acetic anhydride – preparation, Properties. Preparation of esters – methyl acetate – Properties.

Organic Nitrogen Compounds

  • Aliphatic nitro compounds – Preparation of aliphatic nitroalkanes – Properties – Uses. Aromatic nitro compounds – Preparation – Properties – Uses. Distinction between aliphatic and aromatic nitro compounds. Amines; aliphatic amines – General methods of preparation – Properties – Distinction between 10, 20 and 30 amines. Aromatic amines – Synthesis of benzylamine – Properties, Aniline – Preparation – Properties – Uses. Distinction between aliphatic and aromatic amine. Aliphatic nitriles – Preparation – properties – Uses. Diazonium salts – Preparation of benzene diazoniumchloride – Properties.

Biomolecules

  • Carbohydrates – distinction between sugars and non sugars, structure and formulae of glucose, fructose and sucrose, with their linkages, invert sugar – definition and examples of polysaccharides, amino acids, peptides.

 

VITEEE 2015 Physics Syllabus

     Physics

Electrostatics

  • Charges and their conservation;Coulomb’s law-forces between two point electric charges – Forces between multiple electric charges-superposition principle.
  • Electric field – electric field due to a point charge, electric field lines; electric dipole, electric field intensity due to a dipole – behavior of a dipole in a uniform electric field.
  • Electric potential – potential difference-electric potential due to a point charge and dipole-equipotential surfaces – electrical potential energy of a system of two point charges.
  • Electric flux-Gauss’s theorem and its applications to find field due to (i) infinitely long straight wire (ii) uniformly charged infinite plane sheet (iii) two parallel sheets and (iv) uniformly charged thin spherical shell (inside and outside).
  • Electrostatic induction-capacitor and capacitance – dielectric and electric polarisation – parallel plate capacitor with and without dielectric medium – applications of capacitor – energy stored in a capacitor – Capacitors in series and in parallel – action of points – Lightning arrester – Van de Graaff generator.

Current Electricity

  • Electric Current – flow of charges in a metallic conductor – drift velocity and mobility and their relation with electric current.
  • Ohm’s law, electrical resistance – V-I characteristics – electrical resistivity and conductivity-classification of materials in terms of conductivity – Superconductivity (elementary ideas) – Carbon resistors – colour code for carbon resistors- combination of resistors – series and parallel – temperature dependence of resistance – internal resistance of a cell – potential difference and emf of a cell- combinations of cells in series and in parallel.
  • Kirchoff’s law – illustration by simple circuits – Wheatstone’s Bridge and its application for temperature coefficient of resistance measurement – Metrebridge – special case of Wheatstone bridge – Potentiometerprinciple – comparing the emf of two cells.

Magnetic Effects of Electric Current and magnetism

  • Magnetic effect of electric current – Concept of magnetic field – Oersted’s experiment – Biot-Savart law-Magnetic field due to an infinitely long current carrying straight wire and circular coil – Tangent galvanometer – construction and working – Bar magnet as an equivalent solenoid –magnetic field lines.
  • Ampere’s circuital law and its application.
  • Force on a moving charge in uniform magnetic field and electic field – cyclotron – Force on current carrying conductor in a uniform magnetic field – Forces between two parallel current carrying conductors – definition of ampere.
  • Torque experienced by a current loop in a uniform magnetic field – moving coil galvanometer – conversion toammeter and voltmeter –current loop as a magnetic dipole and its magnetic dipole moment- Magnetic dipole moment of a revolving electron.

Electromagnetic Induction and Alternating Current

  • Electromagnetic induction – Faraday’s law – induced emf and current – Lenz’s law.
  • Self induction – Mutual induction – self inductance of a long solenoid – mutual inductance of two long solenoids.
  • Methods of inducing emf – (i) by changing magnetic induction (ii) by changing area enclosed by the coil and (iii) by changing the orientation of the coil (quantitative treatment).
  • AC generator – commercial generator. (Single phase, three phase).
  • Eddy current – applications – transformer – long distance transmission.
  • Alternating current – measurement of AC-AC circuit with resistance – AC circuit with inductor – AC circuit with capacitor – LCR series circuit – Resonance and Q – factor – power in AC circuits.

Optics 

  • Reflection of light, spherical mirrors, mirror formula. Refraction of light, total internal reflection and its applications, optical fibers, refraction at spherical surfaces, lenses, thin lens formula, lens maker’s formula. Magnification, power of a lens, combination of thin lenses in contact, combination of a lens and a mirror.Refraction and dispersion of light through a prism.
  • Scattering of light-blue colour of sky and reddish appearances of the sun at sunrise and sunset.

Electromagnetic Waves and Wave Optics

  • Electromagnetic waves and their characteristics – Electromagnetic spectrum-radio, microwaves, infra-red, visible, ultra-violet, X rays, gamma rays.
  • Wavefront and Huygens’s principle – Reflection, total internal reflection and refraction of plane wave at a plane surface using wavefronts.
  •  Interference – Young’s double slit experiment and expression for fringe width – coherent source – interference of light-Formation of colours in thin films – analytical treatment – Newton’s rings.
  • Diffraction – differences between interference and diffraction of light- diffraction grating.
  • Polarisation of light waves – polarisation by reflection – Brewster’s law – double refraction – nicol prism – uses of plane polarised light and Polaroids – rotatory polarisation – polarimeter.

Atomic Physics

  • Atomic structure – discovery of the electron – specific charge (Thomson’s method) and charge of the electron (Millikan’s oil drop method) – alpha scattering – Rutherford’s atom model.
  • Bohr’s model – energy quantization – energy and wave number expressions – Hydrogen spectrum – energy level diagrams – sodium and mercury spectra – excitation and ionization potentials.
  • Masers and Lasers – spontaneous and stimulated emissions – normal population and population inversion – Ruby laser – He-Ne laser – properties and applications of laser light – holography.

Dual Nature of Radiation and Matter

  • Photoelectric effect – Light waves and photons – Einstein’s photoelectric equation – laws of photoelectric emission – particle nature of energy -experimental verification of Einstein’s photoelectric equation – work function – photo cells and their application.
  • Matter waves – wave mechanical concept of the atom – wave nature of particles – De Broglie relation – De Broglie wavelength of an electron – electron microscope.

Nuclear Physics

  • Nuclear properties – nuclear radii, masses, binding energy, density, charge- isotopes, isobars and isotones – nuclear mass defect – binding energy – stability of nuclei – Bainbridge mass spectrometer.
  • Nature of nuclear forces- Neutron – discovery – properties – artificial transmutation – particle accelerator.
  • Radioactivity – alpha, beta and gamma radiations and their properties-α -decay, β -decay and  γ -decay – Radioactive decay law – half life – mean life – artificial radioactivity – radio isotopes – effects and uses – Geiger – Muller counter.
  • Radio carbon dating – biological radiation hazards.
  • Nuclear fission – chain reaction – atom bomb – nuclear reactor – nuclear fusion – Hydrogen bomb- cosmic rays – elementary particles.

Semiconductor Devices and their Applications

  • Semiconductor theory – energy band in solids – difference between metals, insulators and semiconductors based on band theory- semiconductor doping – Intrinsic and Extrinsic semi conductors.
  • Formation of P-N Junction – Barrier potential and depletion layer-P-N Junction diode – Forward and reverse bias characteristics – diode as a rectifier – Zener diode-Zener diode as a voltage regulator – LED – seven segment display – LCD.
  • Junction transistors – characteristics – transistor as a switch – transistor as an amplifier – transistor as an oscillator.
  • Logic gates – NOT, OR, AND, EXOR using discrete components – NAND and NOR gates as universal gates -Laws and theorems of Boolean algebra.

VITEEE 2015 Mathematics Syllabus

 Mathematics
 

1. Applications of Matrices and Determinants 

  • Adjoint, inverse – properties, computation of inverses, solution of system of linear equations by matrix inversion method.
  • Rank of a matrix – lementary transformation on a matrix, consistency of a system of linear equations, Cramer’s rule, non-homogeneous equations, homogeneous linear system and rank method.

2. Complex Numbers

  • Complex number system – conjugate, properties, ordered pair representation.
  • Modulus – properties, geometrical representation, polar form, principal value, conjugate, sum, difference, product, quotient, vector interpretation, solutions of polynomial equations, De Moivre’s theorem and its applications.
  • Roots of a complex number – nth roots, cube roots, fourth roots.

3. Analytical Geometry of two dimensions

  • Definition of a conic – general equation of a conic, classification with respect to the general equation of a conic, classification of conics with respect to eccentricity.
  • Equations of conic sections (parabola, ellipse and hyperbola) in standard forms and general forms- Directrix, Focus and Latus rectum – parametric form of conics and chords. – Tangents and normals – cartesian form and parametric form- equation of chord of contact of tangents from a point (x1 ,y1 ) to all the above said curves.
  • Asymptotes, Rectangular hyperbola – Standard equation of a rectangular hyperbola.

4. Vector Algebra

  • Scalar Product – angle between two vectors, properties of scalar product, applications of dot products. vector product, right handed and left handed systems, properties of vector product, applications of cross product.
  • Product of three vectors – Scalar triple product, properties of scalar triple product, vector triple product, vector product of four vectors, scalar product of four vectors.

5. Analytical Geometry of Three Dimensions

  • Direction cosines – direction ratios – equation of a straight line passing through a given point and parallel to a given line, passing through two given points, angle between two lines.
  • Planes – equation of a plane, passing through a given point and perpendicular to a line, given the distance from the origin and unit normal, passing through a given point and parallel to two given lines, passing through two given points and parallel to a given line, passing through three given non-collinear points, passing through the line of intersection of two given planes, the distance between a point and a plane, the plane which contains two given lines (co-planar lines), angle between a line and a plane.
  • Skew lines – shortest distance between two lines, condition for two lines to intersect, point of intersection, collinearity of three points.
  • Sphere – equation of the sphere whose centre and radius are given, equation of a sphere when the extremities of the diameter are given.

6. Differential Calculus

  • Derivative as a rate measurer – rate of change, velocity, acceleration, related rates, derivative as a measure of slope, tangent, normal and angle between curves, maxima and minima.
  • Mean value theorem- Rolle’s Theorem, Lagrange Mean Value Theorem, Taylor’s and Maclaurin’s series, L’ Hospital’s Rule, stationary points, increasing, decreasing, maxima, minima, concavity, convexity and points of inflexion.
  • Errors and approximations – absolute, relative, percentage errors- curve tracing, partial derivatives, Euler’s theorem.

7. Integral Calculus and its Applications

  • Simple definite integrals – fundamental theorems of calculus, properties of definite integrals.
  • Reduction formulae – reduction formulae for  sin n x dx and  cosn x dx , Bernoulli’s formula.
  • Area of bounded regions, length of the curve.

8. Differential Equations

  • Differential equations – formation of differential equations, order and degree, solving differential equations (1st order), variables separable, homogeneous and linear equations.
  • Second order linear differential equations – second order linear differential equations with constant coefficients, finding the particular integral if f (x) = emx, sin mx, cos mx, x, x2.

9. Probability Distributions

  • Probability – Axioms – Addition law – Conditional probability – Multiplicative law – Baye’s Theorem- Random variable- probability density function, distribution function, mathematical expectation, variance .
  • Theoretical distributions – discrete distributions, Binomial, Poisson distributions- Continuous distributions, Normal distribution.

10. Discrete Mathematics

  • Mathematical logic – logical statements, connectives, truth tables, logical equivalence, tautology, contradiction.
  • Groups-binary operations, semigroups, monoids, groups, order of a group, order of an element., properties of groups.

 

VITEEE 2015 Biology Syllabus

Biology

Taxonomy

  • Linnaean system of classification and Binomial nomenclature; history and types of classification; status of bacteria and viruses; classification of angiosperms up to sub-class level (Bentham and Hooker’ systems); salient features of non-chordates up to phylum levels and chordates up to class levels.

Evolution

  • Modern concepts of organic evolution, evidences of organic evolution (Fossil records and biochemical evidences). Darwinism and neo – Darwinism, Lamarckism, Neo-Lamarckism, sources of variation, mutation, recombination, genetic drift, migration, natural selection. Origin and concepts of species: speciation and isolation (geographical pre-mating and post-mating or post zygotic), adaptive radiations.

Cell and Molecular Biology

  • Discovery of cell, cell as a contained unit, pro and eukaryotic cells and its ultra structure. Cell division: amitosis, mitosis and meiosis. The cell: cell wall, cell membrane and cell organelles (Plastids, mitochondria, endoplasmic reticulum, Golgi bodies, ribosomes, lysosomes, vacuoles, and centrioles).
  • DNA and RNA, DNA as genetic material, RNA as genetic material replication, transcription, genetic code, translation, gene expression and regulation, protein synthesis, DNA repair.

Reproduction and genetics

  • Reproduction in organisms: asexual and sexual reproduction, sexual reproduction in flowering plants, structure of flowers, pollination , fertilization, development of seeds and fruits, apomixes, and polyembryony.
  • Human reproduction: reproductive system in male and female, menstrual cycles, production of gametes, fertilization, implantation, embryo development, pregnancy, parturition and lactation. Sex determination in human, XX and XY.
  • Chromosomes: structure and types, genes and genomes, linkage and crossing over, recombination of chromosomes, mutation, chromosomal aberration, Mendelian inheritance, chromosomal theory of inheritance, deviation from Mendelian ratio (gene interaction, incomplete dominance, co-dominance, complimentary gene, multiple allelism), chromosomal disorders in humans.

Microbiology and Immunology

  • Introduction to microbial diversity, history of medical microbiology, discovery of antibiotics, pasteurization, microscopes. Fungi, bacteria, virus, protozoa, algae – beneficial and harmful. Parasites and pathogens. Structure of microbes and diseases caused by them.. Microbes in households, food processing, industrial production of microbial products, Sewage treatment, waste management, and energy generation. Basic concepts of immunology: Innate and humoral immunity, lymphoid organs, lymph nodes and spleen, antibodies, vaccines, transplantation immunology, immune system disorders.

Biochemistry

  • Sturcture and function of carbohydrates, lipids, proteins. Disaccharide, starch, glycogen, fats, cholesterol, amino acids, peptides. Primary, Secondary and tertiary structure of proteins. Enzymes, sturcure and mechanism of enzyme catalysis, specificity of enzymes, co factors an co-enzymes.

Physiology: Plant and Human

  • Plant Physiology: Movement of water, food, nutrients, gases and minerals. Respiration, photosynthesis (light and dark reactions), Factors affecting photosynthesis, electron transport chain (ETC), glycolysis, Kreb’s cycle, pentose phosphate pathway, hormones and growth regulators, Photo-periodism and vernalization.
  • Human Physiology: Digestion and absorption, breathing and respiration, body fluids and circulation, excretory system, endocrine system, nervous system, skeletal and muscular systems: locomotion, and movement, growth, aging and death. Hormones; types of hormones and its functions.

Biotechnology and its applications

  • Recombinant DNA technology, applications in health, agriculture and industries; genetically modified organisms; bio-safety issues, insulin and Bt cotton, transgenic plants and microbes, plant tissue culture and its application, micropropagation, protoplasmic fusions, single cell proteins, biotechnology products in animal sciences and dairy.

Biodiversity, ecology, and environment

  • Ecosystems: components, types, and energy flow in ecosystem; species, population and community, ecological adaptations, centers of diversity and conservation of bio-diversity, botanical gardens, national parks, sanctuaries and museums, environmental issues, human population explosion, green house effects, ozone layer depletion, government and Non-government agencies handling environmental issues: poverty and freshwater crisis, and management.

Applied biology and human welfare

  • Bio-pesticides, genetically modified foods, bio-war, bio-piracy, bio-pattern, sustainable agriculture and medicinal plants, economic important plants (food crops, oil seeds, fiber yielding, sugar crops and timber yielding), bio-pharming, pesticides, organic agriculture. Population and birth control, contraception and MTP, sexually transmitted diseases, infertility, cancer and AIDS. Adolescence and drug/or alcohol abuse.

Advanced Biology

  • Plant and human genome projects, DNA fingerprinting and its applications, Bioinformatics and its applications, DNA sequencing and protein structure and biological databases.

 

VITEEE 2016 Entrance Exam Syllabus

 

Click here for VITEEE Model Papers & Free Sample Papers

 

  • VIT (Vellore Institute of Technology) for 2016 Engineering Entrance Examination Contain 3-Parts of Syllabus  i.e

PART-I – Physics
PART-II – Chemistry
PART-III – Mathematics / Biology

  • Candidates attempting Parts-Physics, Chemistry & Mathematics are eligible for all the 14 programmes offered by VITEEE.
  • Candidates attempting Parts-Physics, Chemistry & Biology are eligible for Bio-Medical Engineering, Biotechnology and Computer Science and Engg (Spec. in Bioinformatics) programmes only.
  • All the questions will be mostly from the State Board of Higher Secondary Education and the CBSE syllabus only. The detail syllabus for the Entrance Examination is given below.

VITEEE 2016 Physics Syllabus

VITEEE 2016 Chemistry Syllabus

VITEEE 2016 Mathematics Syllabus

VITEEE 2016 Biology Syllabus

© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur