Gautam Buddha Nagar District of Uttar Pradesh at a Glance

Lok Sabha Constituencies in Gautam Buddha Nagar district, Uttar Pradesh (MP Constituencies) Gautam Buddha Nagar
MLA Assembly Constituencies in Gautam Buddha Nagar district, Uttar Pradesh Dadri
Jewar
Noida

About Gautam Buddha Nagar :

The District Gautam Buddh Nagar was formed on 6/9/97 with effect from Govt. order no 1249/97/82/97 by carving out the portions of Ghaziabad and Bulandshahar. District Gautam Buddh Nagar includes Dadri and Bisrakh blocks carved out of gaziabad, while Dankaur and Jewar blocks have been carved out of Bulandshahar District. 18 other villages from Bulandshahar have also been carved out and have been included in Dankaur and Jewar

District at a Glance :

  • District – 
  • Headquarters – 
  • State
Area in Sq Km (Census 2011)
  • Total – 
  • Rural – 
  • Urban – 
Population (Census 2011)
  • Population – 
  • Rural – 
  • Urban – 
  • Male – 
  • Female – 
  • Sex Ratio (Females per 1000 males) – 
  • Density (Total, Persons per sq km) – 
Constituencies (ECI)
  • Assembly
  • Loksabha

AIEEA – UG – 2014 Agriculture Syllabus

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

Unit-1: Agrometeorology, Genetics and Plant Breeding, Biochemistry and Microbiology

Agrometerology: Elements of Weather-rainfall, temperature, humidity, wind velocity, Sunshine weather forecasting, climate change in relation to crop production.

Genetics & Plants Breeding : (a) Cell and its structure, cell division-mitosis and meiosis and their significance (b) Organisation of the genetic materials in chromosomes, DNA and RNA (c) Mendel’s laws of inheritance. Reasons for the success of Mendel in his experiments, Absence of linkage in Mendel’s experiments. (d) Quantitative inheritance, continuous and discontinuous variation in  plants. (e) Monogenic and polygenic inheritance. (f) Role of Genetics in Plant breeding, self and cross-pollinated crops, methods of breeding in field crops-introduction, selection, hybridization, mutation and polyploidy, tissue and cell culture, (g) Plant Biotechnology-definition and scope in crop production.

Biochemistry: pH and buffers, Classification and nomenclature of carbohydrates; proteins; lipids; vitamins and enzymes.

Microbiology: Microbial cell structure, Micro-organisms-Algae, Bacteria, Fungi, Actinomycetes, Protozoa and Viruses Role of micro-organisms in respiration, fermentation and organic matter decomposition.

Unit-2: Livestock Production

Scope and importance: (a) Importance of livestock in agriculture and industry. White revolution in India. (b) Important breeds Indian and exotic, distribution of cows, buffaloes and poultry in India.

Care and management: (a) Systems of cattle and poultry housing (b) Principles of feeding, feeding practices. (c) Balanced ration-definition and ingredients. (d) Management of calves, bullocks, pregnant and milch animals as well as chicks crockrels and layers, poultry. (e) Signs of sick animals, symptoms of common diseases in cattle and poultry, Rinderpest, black quarter, foot and mouth, mastitis and haemorrhagic septicaemia coccidiosis, Fowl pox and Ranikhet disease, their prevention and control.

Artificial Insemination: Reproductive organs, collection, dilution and preservation of semen and artificial insemination,

role of artificial insemination in cattle improvement, Livestock Products: Processing and marketing of milk and Milk products.

 

Unit-3: Crop Production

Introduction: (a) Targets and achievements in foodgrain production in India since independence and its future projections, sustainable crop production, commercialization of agriculture and its scope in India. (b) Classification of field crops based on their utility-cereals, pulses, oils seeds, fibre, sugar and forage crops.

Soil, Soil fertility, Fertilizers and Manures: (a) Soil, soil pH, Soil structure, soil organisms, soil organisms, soil tilth, soil fertility and soil health. (b) Essential plant nutrients, their functions and deficiency symptoms. (c) soil types of India and their characteristics. (d) Organic manure, common fertilizers including straight, complex, fertilizer mixtures and biofertilizers; integrated nutrient management system.

Irrigation and Drainage: (a) Sources of irrigation (rain, canals, rivers, wells, tubewells). (b) Scheduling of irrigation based on critical stages of growth, time interval, soil moisture content and weather parameters. (c) Water requirement of crops. (d) Methods of irrigation and drainage. (e) Watershed management.

Weed Control: Principles of weed control, methods of weed control (cultural, mechanical, chemical, biological and Integrated weed management)

Crops: Seed bed preparation, seed treatment, time and method of sowing/planting, seed rate; dose, method and time of fertilizer application, irrigation, interculture and weed control; common pests and diseases, caused by bacteria, fungi virus and nematode and their control, integrated pest management, harvesting, threshing, post harvest technology: storage, processing and marketing of major field crops-Rice, wheat, maize, sorghum, pearl millet, groundnut, mustard, pigeon-pea, gram, sugarcane, cotton and berseem.

Unit-4: Horticulture

(a)        Importance of fruits and vegetables in human diet, Crop diversification & processing Industry. (b) orchard-location and layout, ornamental gardening and kitchen garden. (c) Planting system, training, pruning, intercropping, protection from frost and sunburn. (d) Trees, shrubs, climbers, annuals, perennials-definition and examples. Propagation by seed, cutting, budding, layering and grafting.(e) Cultivation practices, processing and marketing of: (i) Fruits – mango, papaya, banana, guava, citrus, grapes, (ii) Vegetables – Radish, Carrot, potato, onion, cauliflower, brinjal, tomato, spinach and cabbage, (iii) Flowers – Gladiolus, canna, chrysanthemus, roses and marigold. (f) Principles and methods of fruit and vegetable preservation. (g) Preparation of jellies, jams, ketchup, chips and their packing.

AIEEA – UG – 2014 Mathematics Syllabus

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

Unit-1: Sets and functions

1. Sets : Sets and their representations. Empty set. Finite & Infinite sets. Equal sets. Subsets, Subsets of the set of real numbers especially intervals (with notations). Power set. Universal set. Venn diagrams. Union and intersection of sets. Difference of sets. Complement of a set.

2. Relations & Functions : Ordered pairs, Cartesian product of sets. Number of elements in the Cartesian product of  two finite sets. Cartesian product of the reals with itself (Upto R × R × R). Definition of relation, Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions, composite functions, inverse of a function. Binary operations. Pictorial representation of a function, domain. Co-domain and range of a relation. Function as a special kind of relation from one set to another. Real valued function of the real variable, domain and range of these functions, constant, identity, polynomial, rational, modulus, signum and greatest integer functions with their graphs. Sum, difference, product and quotients of functions.

3. Trigonometric Functions: Positive and negative angles. Measuring angles in radians & in degrees and conversion from one measure to another. Definition of trigonometric functions with the help of unit circle. Truth of the identity sin2x + cos2x = 1, for all x. Signs of trigonometric functions and sketch of their graphs. Expressing sin(x +y) and cos (x+y) in terms of sinx, siny, cosx & cosy. Deducing the identities like the following:

 1

Identities related to sin2x, tan2x, sin3x, cos3x and tan3x. General solution of trigonometric equations of the type sin è ? = sin á, cos è ? = cos á? and tan é ? = tan á.

Inverse Trigonometric Functions: Definition, range, domain, principal value branches. Graphs of inverse trigonometric functions. Elementary properties of inverse trigonometric functions.

Properties of triangles, including centroid, incentre, circum-centre and orthocenter, Solution of triangle, Heights and Distances.

Unit-2: Algebra

1. Principle of Mathematical induction: Processes of the proof by induction, motivating the application of the method by looking at natural numbers as the least inductive subset of real numbers. The principle of mathematical induction and simple applications.

2. Complex Numbers and Quadratic Equations: Need for complex numbers, especially-1, to be motivated inability to solve every quadratic equation. Brief description of algebraic properties of complex numbers. Argand plane and polar representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations in the complex number system.

3. Linear Inequalities: Linear inequalities, Algebraic solutions of linear inequalities in one variable and their representation on the number line. Graphical solution of linear inequalities in two variables. Solution of system of linear inequalities in two variables- graphically.

4. Permutations & Combinations: Fundamental principle of counting. Factorial n.(n!). Permutations and combinations, derivation of formula and their connections, simple applications.

5. Binomial Theorem: History, statement and proof of the binomial theorem for positive integral indices. pascal’s triangle, General and middle term in binomial expansion, simple applications.

6. Sequence and Series: Sequence and Series, Arithematic progression (A.P.). arithmetic mean (A.M.) Geometric progression(G.P), general term of G.P., sum of n terms of a G.P., geometric mean(G.M.). relation between A.M. and G.M. Sum to ne terms of the special series Ón, Ón2, and Ón­3.

7. Matrices: Concept, notation, order, equality, types of matrices, zero matrix, transpose of a matrix, symmetric and skew symmetric matrices. Addition, multiplication and scalar multiplication of matrices, simple  properties of addition, multiplication and scalar multiplication. None-commutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix(restrict to square matrices of order 2). Concept of elementary row and column operations. Invertible matrices and proof of the unquencess of inverse, if it exists.

8. Determinants: Determinant of a square matrix( up to 3 × 3 matrices), properties of determinants, minors, cofactors and application of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equation by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.

Unit-3: Coordinate Geometry

1. Straight Lines: Slope of a line and angle between two lines. Various forms of equations of a line: parallel to axes, point-slope form, slope-intercept form, two-point form, intercepts form and normal form. General equation of a line. Distance of a point from a line.

2. Conic Sections: Sections of a cone: circle ellipse, parabola, hyperbola, a point, a straight line and pair of parabola, ellipse and hyperbola. Standard equation of a circle.

3. Introduction to Three-dimensional Geometry: Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between two points and section formula.

Unit-4: Calculus

1. Limits and Derivatives: Derivative introduced as rate of change both as that of distance function and geometrically, intuitive idea of limit. Definition of derivative, relate it to slope of tangent of the curve, derivative of sum, difference, product and quotient of functions. Derivatives of polynomial and trigonometric functions.

2. Continuity and Differentiability: Continuity and differentiability, derivative of composite functions, chain rule, derivatives of inverse trigonometric functions, derivative of implicit function. Concept of exponential and logarithmic functions and their derivative. Logarithmic differentiation. derivative of functions expressed in parametric forms. Second order derivatives. Rolle’s and Lagrang’s Mean Value Theorems (without proof) and their geometric interpretations.

3. Application of Derivatives: Application of derivatives: rate of change, increasing/decreasing functions, tangents & normals, approximation, maxima and minima(first derivative test motivated geometrically and second derivative test given as a provable tool). Sample problems.

4. Integrals: Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts; only simple integrals of the type

2

 to be a evaluated. Definite integrals as a limit of a sum, Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

5. Applications of the Integrals : Application in finding the areas under simple curves, especially lines, areas of circles/parabolas/ellipses(in standard form only), area between the two above said curves.

6. Differential Equations: Definition, order and degree, general and particular solutions of a differential equation, Formation of differential equation whose general solution is given. Solution of differential equations by method of separation of variables, homogenous differential equations of first order and first degree. Solutions of linear differential equation of the type: 3  where p and q are function of x.

Unit-5: Vectors and Three-Dimensional Geometry

1. Vectors: Vectors and scalars, magnitude and direction of a vector. Direction cosines/ratios of vectors. Types of vectors (equal unit, zero, parallel and collinear vectors), position vector of a pint, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar position vector of a point dividing a line segment in  a given ratio. Scalar (dot) product of vectors, projection of a vector on a line. Vector(cross) product of vectors.

2. Three-dimensional Geometry: Direction cosines/ratios of a line joining two points. Cartesian and vector equation of a line, coplanar and skew lines, shortest distance between two lines. Cartesian and vector equation of a plane. Angle between(i) two lines, (ii) two planes. (iii) a line and a plane. Distance of a point from a plane.

Unit-6: Linear Programming

Linear Programming: Introduction, definition of related terminology such as constraints, objective function, optimization, different types of linear programming (L.P.) problems, mathematical formulation of L.P. problems, graphical method of solution for problems in two variables, feasible and infeasible regions, feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-7: Mathematical Reasoning

Mathematical Reasoning: Mathematically acceptable statements. Connecting words/phrases – consolidating the understanding of “if and only if (necessary and sufficient) condition”, “implies”, “and/or”, “implied by”, “and” “or”, “there exists” and their use through variety of examples related to real life and Mathematics Validating the statements involving the connecting words, difference between contradiction, converse and contra positive.

Unit-8: Statistics & Probability

1. Statistics: Measures of central tendency, mean, median and mode from ungrouped/grouped data. Measures of dispersion, mean deviation, variance and standard deviation from ungrouped/ data. Correlation, regression lines.

2. Probability: Random experiments: outcomes, sample spaces (set representation) Events: occurrence of events, ‘not’, ‘and’ and ‘or’ events, exhaustive events, mutually exclusive events Axiomatic (set theoretic) probability, Probability of an event, probability of ‘not’, ‘and’ & ‘or’ events. Multiplication theorem on probability. Conditional probability, independent events, total probability. Bayes’ theorem, Random variable and its probability distribution, mean and variance of stochastic variable. Repeated independent (Bernoulli) trials and Binomial distribution.

Unit-9: Statics

Introduction: basic concepts and basic laws of mechanics, force resultant of forces acting at a point, parallelogram law of forces, resolved parts of a force, Equilibrium of a particle under three concurrent forces. Triangle law of forces and its converse, Lami’s theorem and its converse, Two parallel forces, like and unlike parallel forces, couple and its moment.

Unit-10: Dynamics

Speed and velocity, average speed, instantaneous speed, acceleration and retardation, resultant of two velocities. Motion of a particle along a line, moving with constant acceleration. Motion under gravity. Laws of motion, Projectile motion.

AIEEA – UG – 2014 Biology Syllabus

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

Unit: 1 The living World

Nature and scope of Biology, Methods of Biology. Our place in universe. Laws that govern the universe and life. Level of organization. Cause and effect relationship.

Origin of life and its maintenance. Origin and diversity of life. Physical and chemical principles that maintain life processes. The living crust and interdependence. The positive and negative aspects of progress in biological sciences. The future of the living world. identification of human responsibility in shaping our future.

Unit:2 Unit of Life

Cells as a unit of life. Small biomolecules; water, minerals, mono and oligosaccharides, lipids, amino acids, nucleotides and their chemistry, cellular location and function. Macromolecules in cells – their chemistry, cellular location and functional significance, Polysaccharides, proteins and nucleic acids. Enzymes; chemical nature, classification, mechanism in action-enzyme complex, allosteric modulation (brief), inrreversible activation. Biomembranes; Fluid mosaic model of membrane, role in transport, recognition of external information (brief). Structural organization of the cell; light and electron microscopic view of cell, its organelles and their functions; nucleus mitochondria, chloroplasts, endoplasmic reticulum. Golgi complex, lysosomes, microtubules, cell wall, cilia and flagella, vacuoles, cell inclusions. A general account of cellular respiration. Fermentation, biological oxidation (A cycle outline), mitochondrial electron transports chain, high energy bonds and oxidative phosphorylation, cell reproduction; process of mitosis and meiosis.

Unit-3: Diversity of Life

Introduction. The enormous variety of living things, the need for classification to cope with this variety; taxonomy and phylogeny; shortcomings of a two kingdom classification as plants and animals; the five kingdom classification, Monera, Protista, Plantae, Fungi and Animalia; the basic features of five kingdom classification. Modes of obtaining nutrition-autotrophs and heterotrophs. Life style producers, consumers and decomposers. Unicellularity and multicellularity, phyylogenetic relationships. Concepts of species, taxon and categories – hierarchical levels of classification; binomial nomenclature; principles of classification and nomenclature; identification and nature of viruses and bacteriophages; kingdom Monera-archeabacteria – life in extermen environments; Bacteria, Atinomycetes, Cyanobacteria. Examples & illustration of autotrophic and heterotrophic life; mineralizes-nitrogen fixers; Monera in cycling matter; symbiotic forms; disease producers. Kingdom Protissta-Eukaryotic unicellular organisms, development of flagella and cilia; beginning of mitosis; syngamy and sex. Various life styles shown in the major phyla. Evolutionary precursors of complex life forms. Diatoms, dinoflagellates, slime moulds, protozons; symbiotic forms. Plant kingdom-complex autotrophs, red brown and green algae; conquest of land, bryophytes, ferns, gymnosperms and angiosperms. Vascularization; development of flower, fruit and seed. Kingdom fungi-lower fungi(Zygomycetes), higher fungi (Ascomycetes and Basidiomycetes); the importance o fungi. Decomposers; parasitic forms; lichens and mycorrhizae. Animal kingdom-animal body pattern and symmetry. The development of body cavity in invertebrate vertebrate physia. Salient features with reference to habitat and example of phylum porifera, coelenterate, helminthes, annelids, mollusca, arthropoda, echinoderms; chordate (classes-fishes, amphibians, reptiles, birds and mammals) highlighting major characters.

Unit:4 Organisms and Environment

Species : Origin and concept of species population, interaction between environment and population community. Biotic community, interaction between different species, biotic stability. Changes in the community. Succession, Ecosystem; interaction between biotic and abiotic components; major ecosystems, manmade ecosystem – Agro ecosystem. Biosphere; flow of energy, trapping of solar energy, energy pathway, food web, biogeochemial cycles, calcium and sulphur, ecological imbalance and its consequences. Conservation of natural resources’ nerewable and non-renewable (in brief). Water and land management, wasteland development. Wild life and forest conservation; causes for the extinction of some wild life, steps taken to conserve the remaining species, concept of endangered concept of afforestation. Environmental pollution; air and water pollution, sources, major pollutants of big cities of our country, their effects and methods of control, pollution due to fallout and waste disposal, effect and control, noise pollution; sources and effects.

Unit:5 Multicellulairty : Structure and Function – Plant Life

Form and function. Tissue system in flowering plants; meristematic and permanent. Mineral nutrition-essential elements, major functions of different elements, passive and active uptake of minerals. Modes of nutrition, transport of solutes and water in plants. Photosynthesis; photochemical and biosynthetic phases, diversity in photosynthetic pathways, photosynthetic electron transport and photophosphorylation, photorespiration. Transpiration and exchange of gases. Stomatal mechanism. Osmoregulation in plants: water  relations in plant cells, water potential. Reproduction and development in Angiosperms; asexual and sexual reproduction. Structure and functions of flower : development of male and female gametophytes in angiosperms, pollination, fertilization and development of endosperm, embryo seed and fruit. Differentiation and organ formation. Plant hormones and growth regulation; action of plant hormones in relation to seed dormancy and germination, apical dominance. senescence and abscission. Application of synthetic growth regulators. A brief account of growth and movement in plants.

Unit:6 Multicellularity : Structure and Function – Animal Life

Animal tissues, epithelial, connective, muscular, nerve. Animal nutrition, organs of digestion and digestive  process, nutritional requirements for carbohydrates, proteins, fats, mineral and vitamins; nutritional imbalances and deficiency diseases. Gas exchange and transport: Pulmonary gas exchange and organs involved, transport of gases in blood, gas exchange in aqueous medic circulation: closed and open vascular systems, structure and pumping action of heart, arterial blood pressure, lymph. Excretion and osomoregulation. Ammonotelism, Ureotelism, urecotelism, excretion of water and urea with special reference to man. Role of kidney in regulation of plasma, osmolarity on the basis of nephron structure, skin and lungs in excretion. Hormonal coordination; hormones of mammals, role of hormones as messengers and regulators. Nervous coordination, central autonomic and peripheral nervous systems, receptors, effectors, reflex action, basic physiology of special senses, integrative control by neuroendocrinal systems. Locomotion: joints, muscle movements, types of skeletal muscles according to types of movement, basic aspects of human skeleton. Reproduction; human reproduction, female reproductive cycle. Embryonic development in mammals (upto three germs layers), growth, repair and ageing.

Unit:7 Continuity of Life

Heredity and variation: Introduction, Mendel’s experiments with peas and concepts of factors. Mendel’s laws of inheritance. Genes: Packaging of heredity material in prokaryotes-bacterial chromosome and plasmid; and eukaryote chromosomes. Extranuclear genes, viral genes. Linkage (genetic) maps. Sex determination and sex linkage. Genetic material and its replication, gene manipulation, Gene expression; genetic code, transcription, translation, gene regulation. Molecular basis of differentiation.

Unit:8 Origin and Evolution of Life

Origin of life: living and non-living, chemical evolution. organic evolution; Oparin ideas, Miller-Urey experiments. Interrelationship among living organisms and evidences of evolution: fossil records including geological scale, Morphological evidence – hematology, vestigial organs, embryological similarities and biogeographical evidence.

Darwin’s two major contributoions. Common origin of living organisms and recombination as sourece of variability selection and variation, adaptation (Lederberg’s replica plating experiment for indirect selection of bacterial mutants), reproductive isolation, speciation. Role of selection, change and drift in determining composition of population. Selected examples: industrial melanism; drug resistance, mimicry, malaria in relation to G-6-PD deficiency and sickle cell disease. Human evolution: Placontological evidence, man’s place among mammals. Brief idea of dryopithecus, Australopithecus, Homo erectus. H. neanderthlensis, Cro-Magnon man and Homo sapiens. Human chromosomes, similarity in different racial groups. Comparison with chromosomes of non-human primates to indicate common origin; Cultural vs. biological evolution.

Mutation: origin and types of mutation, their role in speciation.

Unit:9 Application of Biology

Introduction, role of biology, in the amelioration of human problems. Domestication of plant- a historical account, improvement of crop plants; Principles of plant breeding and plant introduction. Use of fertilizers, their economic and ecological aspects.

Use of pesticides: advantages and hazards. Biological methods of pest control. Crops today. Current concerns, gene pools and genetic conservation. Underultilized crops with potential uses of oilseeds, medicines, beverages, spices, fodder. New crops-Leucaena (Subabul), Jojoba, Guayule, winged bean, etc. Biofertilizers – green manure, crop residues and nitrogen fixation (symbiotic, non symbiotic). Applications of tissue culture and genetic engineering in crops. Domestication and introduction of animals. Livestock, poultry, fisheries (Fresh water, marine, aquaculture). Improvement of animals: principles of animal breeding. Major animal diseases and their control. Insects and their products (silk, honey, wax and lac). Bioenergy-biomass, wood(combustion; gasification, ethanol). Cow dung cakes, gobar gas, plants as sources of hydrocarbons, for producing petroleum, ethanol from starch and lignocelluloses. Biotechnology, application in  health and agriculture, genetically modified (GM) organisms, bio-safety issues. A brief historical account-manufacture of cheese. yoghurt, alcohol, yeast, vitamins, organic acids, antibiotics, steroids, dextrins. Scalling up laboratory findings to industrial production, sewage treatment. Production in insulin, human growth hormones, interferon. Communicable diseases including STD and diseases spread through blood transfusion (hepatitis, AIDS, etc) Immune response, vaccine and antisera. Allergies and Inflammation. Inherited diseases and dysfunction, sex-linked diseases, genetic incompatibilities, and genetic counseling. Cancer-major types. causes, diagnosis and treatment. Tissue and organ transplantation. Community health services and measures; blood banks; mental health, smoking, alcoholism and drug addiction-physiological symptoms and control measures. Industrial wastes, toxicology, pollution-related diseases. Biomedical engineering – spare parts for man, instruments for diagnosis of diseases and care. Human population related diseases. Human population, growth, problems and control, inequality between sexes, control measures; test-tube babies aminocentesis. Future of Biology.

AIEEA – UG – 2014 Chemistry Syllabus

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

Unit-1 : Some Basic Concepts of Chemistry

General Introduction: Importance and scope of chemistry. Historical approach to particulate nature of matter, laws of chemical combination. Dalton’s atomic theory: concept of elements, atoms and molecules. Atomic and molecular masses mole concept and molar mass: percentage composition, empirical and molecular formula chemical reactions, stoichiometry and calculations based on stoichiometry.

Unit-2: Solid State

Classification of solid based on different binding forces : molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea), unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties.

Unit-3: Solutions

Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, colligative properties-relative lowering of vapour pressure, elevation of Boiling Point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass.

Unit-4: Structure of Atom

Discovery of electron, proton and neutron; atomic number, isotopes and isobars. Thomson’s model and its limitations, Rutherford’s model and its limitations. Bohr’s model and its limitations, concept of shells and subshells, dual nature of matter and light, de Broglie’s relationship. Heisenberg uncertainty principle, concept of orbitals, quantum numbers, shapes of s, p, and d orbitals, rules for filling electrons in orbitals-Aufabau principle, Pauli exclusion principle and Hund’s rule, electronic configuration of atoms, stability of half filled and completely filled orbitals.

Unit-5: Classification of Elements and Periodicity in Properties

Significance of classification, brief history of the development of periodic table, modern periodic law and the present form of periodic table, periodic trends in properties of elements –atomic radii, ionic radii. Ionization enthalpy, electron gain enthalpy, electro negativity, valence.

Unit-6: Chemical Bonding and Molecular Structure

Valence electrons, ionic bond, covalent bond: bond parameters. Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR(Valence shell electron pair repulsion) theory, concept of hybridization, involving s, p and d orbitals and shapes of some simple molecules, molecular orbitas; theory of homonuclear diatomic molecules (qualitative idea only), hydrogen bond.

Unit-7: States of Matter: Gases and Liquids

Three states of matte. Intermolecular interactions, type of bonding, melting and boiling points. Role of gas laws in elucidating the concept of the molecule, Boyle’s law. Charles law, Gay Lussac’s law, Avogadro’s law. Ideal behavior, empirical derivation of gas equation, Avogadro’s number. Ideal gas equation. Derivation from ideal behavior, liquefaction of gases, critical temperature. Liquid State- Vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivations)

Unit-8: Thermodynamics

Concepts of System, types of systems, surroundings, Work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics – internal energy and enthalpy, heat capacity and specific heat, measurement of DU and DH, Hess’s law of constant heat summation, enthalpy of: bond dissociation, combustion, formation, atomization, sublimation. Phase transformation, ionization, and solution. Introduction of entropy as a state function, free energy change for spontaneous and non-spontaneous processes, criteria for equilibrium.

Unit-9: Equilibrium

Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass of action, equilibrium constant, factors affecting equilibrium – Le Chatelier’s principle; ionic equilibrium – ionization of acids and bases, strong and weak electrolytes, degree of ionization, concept of pH. Hydrolysis of salts. Buffer solutions, solubility product, common ion effect.

Unit-10: Redox Reactions

Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions, applications of redox reactions.

Unit-11: Hydrogen

Position of hydrogen in periodic table, occurrence, isotopes, preparation, properties and uses of hydrogen; hydrides – ionic, covalent and interstitial; physical and chemical properties of water, heavy water; hydrogen peroxide-preparation, properties and structure; hydrogen as a fuel.

Unit-12: s-Block Elements (Alkali and Alkaline earth metals)

Group 1 and Group 2 elements

General introduction, electronic configuration, occurrence, anomalous properties of the first element each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water, hydrogen and halogens; uses.

Unit-13: Preparation and properties of some important compounds

Sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogen carbonate, biological importance of sodium and potassium. CaO, CaCO3 and industrial use of lime and limestone, biological importance of Mg and Ca

Unit-14: Some p-Block Elements

General Introduction to p-Block Elements: Group 13 elements

General introduction, electronic configuration, occurrence. Variation of properties, oxidations states, trends in chemical reactivity, anomalous properties of first element of the group; Boron-physical and chemical properties, some important compound: borax, boric acids, boron hydrides. Aluminum: uses, reactions with acids and alkalies.

Unit-15: Group 14 elements

General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous behavior of first element, Carbon – catenation, allotropic forms, physical and chemical properties; uses of some important compounds: oxides. Important compounds of silicon and a few uses: silicon tetrachloride, silicones, silicates and zeolites.

Unit-16: Organic Chemistry

Some Basic Principles and Techniques

General Introduction, methods of qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions; electrophiles and nucleophiles, types of organic reactions.

Unit-17: Hydrocarbons

Classification of hydrocarbons

Alkanes – Nomenclature, isomerism, conformations (ethane only), physical properties, chemical reactions including free radical mechanism of halogenation, combustion and pyrolysis.

Alkenes – Nomenclature, structure of double bond (ethane) geometrical isomerism, physical properties, methods of preparation; chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov’s addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition.

Alkynes – Nomenclature, structure of triple bind (ethyne), physical properties. Methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of – hydrogen, halogens, hydrogen halides and water.

Aromatic hydrocarbons: Introduction, IUPAC nomenclature; benzene: resonance, aromaticity, chemical properties mechanism of electrophilic substitution. – nitration, sulphonation, halogenations. Friedel-Craft’s alkuylation and acylation: directive influence of functional group in mono-substituted benzene; carcinogenicity and toxicity.

Unit-18: Electrochemistry

Conductance in electrolytic solutions, specific and molar conductivity variations of conductivity with concentration, Kohlrausch’s Law, electrolysis and laws of electrolysis (elementary idea), dry cell – electrolytic cells and Galvanic cells: lead accumulator, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, fuel cells; corrosion.

Unit-19: Chemical Kinetics

Rate of a reaction (average and instantaneous), factors affecting rate of reaction; concentration, temperature, catalyst; order and molecularity of a reaction; rate law and specific rate constant, integrated rate equations and half life (only for zero and first order reactions); concept of collision theory (elementary idea, no mathematical treatment)

Unit-20: Surface Chemistry

Adsoprtion – physisorption and chemisorptions; factors affecting adsorption of gases on solids; catalysis : homogenous and heterogeneous, activity and selectivity: enzyme catalysis; colloidal state: distinction between true solutions, colloids and suspensions; lyophilic lyophobic, multimolecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation; emulsion – types of emulsions.

Unit-21: General Principles and Processes of Isolation of Elements

Principles and methods of extraction – concentration, oxidation, reduction electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and iron.

Unit-22: p-Block Elements

 Group 15 elements

General introduction, electronic configuration, occurrence, oxidation states, trends in physical and chemical properties; nitrogen – preparation, properties and uses; compounds of nitrogen: preparation and properties of ammonia and nitric acid, oxides of nitrogen (structure only); Phosphorous-allotropic froms; compounds of phosphorous: preparation and properties of phosphine, halides(PCl3, PCl5) and oxoacids

Unit-23: Group 16 elements

General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; dioxygen: preparation, properties and uses; simple oxides; Ozone. Sulphur-allotropic forms; compounds of sulphur: preparation, properties and uses of sulphur dioxide; sulphuric acid: industrial process of manufacture, properties and uses, oxoacids of sulphur (structures only).

Unit-24: Group 17 elements

General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; compounds of halogens: preparation, properties and uses of  chlorine and hydrochloric acid, interhalogen compounds, oxoacids of halogens (structures only).

Unit-25: Group 18 elements

General introduction, electronic configuration. Occurrence, trends in physical and chemical properties, uses.

Unit-26: d and f Block Elements

General introduction, electronic configuration, occurrence and characteristics of transition metals. General trends in properties of the first row transition metals – metallic character, ionization enthalpy, oxidation states, ionic radii, colour catalytic property, magnetic properties, interstitial compounds, alloy formation preparation and properties of K2Cr2O7 and KMnO4.

Lanthnoids – electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction.

Actinoids – Electronic configuration, oxidation states.

Unit-27: Coordination Compounds

Coordination compounds – Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds, bonding; isomerism, importance of coordination compounds (in qualitative analysis, extraction of metals and biological systems).

Unit-28: Haloalkanes and Haloarenes

Halokanes : Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions.

Halorenes : Nature of C-X bond, substitution reactions (directive influence of halogen for monosubstituted compounds only) Uses and environmental effects of – dichloromethane, trichloromethane, tetrachloromethane, iodoform, freons, DDT.

Unit-29: Alcohols, Phenols and Ethers

Alcohols

Nomenclature, methods of preparation, physical and chemical  properties (of primary alcohols only); identification of primary, secondary and tertiary alcohols; mechanism of dehydration, uses of methanol and ethanol. Phenols : Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophillic substitution reactions, uses of phenols, Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses,

Unit-30: Aldehydes, Ketones and Carboxylic Acids

Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties mechanism of nucleophillic addition, reactivity of alpha hydrogen in aldehydes; uses.

Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.

Unit-31: Organic compounds containing Nitrogen

Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, identification of primary, secondary and tertiary amines.

Cyanides and Isocyanides – will be mentioned at relevant places in context.

Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.

Unit-32: Biomolecules

Carbohydrates – Classification (aldoses and ketoses), monosaccharide (glucose and fructose), oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen); importance

Proteins – Elementary idea of a-amino acids, peptide bond, polypeptides, proteins, structure of amines-primary, secondary, tertiary structure and quaternary structures (qualitative idea only), denaturation of proteins; enzymes.

Vitamins – Classification and functions.

Nucleic Acids: DNA and RNA.

Unit-33: Polymers

Classification- natural and synthetic, methods of polymerization (addition and condensation), copolymerization. Some important polymers: natural and synthetic like polythene, nylon, polyesters, Bakelite, rubber.

Unit-34: Environmental Chemistry

Environmental pollution – air,, water and soil pollution, chemical reactions in atmosphere, smog, major atmospheric pollutants; acids rain, ozone and its reactions, effects of depletion of ozone layer, greenhouse effect and global warming – pollution due to industrial wastes; green chemistry as an alternative tool for reducing pollution, strategy for control of environmental pollution.

Unit-35: Chemistry in Everyday life

1. Chemical in Medicines – analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamines.

2. Chemical in food – preservatives, artificial sweetening agents.

3. Cleansing agents – soaps and detergents, cleansing action.

AIEEA UG Degree Programmes (ICAR)

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

AIEEA UG Degree Programmes (ICAR)

Admission to 11 Bachelor degree programmes of four years duration in the subjects of: (i) Agriculture (ii) Horticulture (iii) Fisheries (iv) Forestry (v) Home Science (vi) Sericulture (vii) Biotechnology (viii) Agricultural Engineering (ix) Dairy Technology (x) Food Science and (xi) Agricultural Marketing & Cooperation etc. is available to Indian Nationals based on merit-rank in
ICAR’s All India Entrance Examination for Admission (AIEEA). For the purpose of Entrance Examination, above 11 degree programmes are categorized into two Streams viz.

Stream-A: Agriculture/Biology and

Stream-B: Mathematics.

The candidate has a right to exercise option only for one Stream at the time of submitting the application. The option once exercised cannot be changed subsequently.

  •  STREAM-A (Agriculture/Biology): Candidates under this stream can seek admission for Bachelor degree programmes in Agriculture, Horticulture, Fisheries, Forestry, Home Science, Sericulture, Food Science, and Biotechnology.
  •  STREAM-B (Mathematics): Candidates under this stream can seek admission for Bachelor degree programmes in Agricultural Engineering, Dairy Technology, Agricultural Marketing & Co-operation and also in Forestry, Food Science and Biotechnology at some of the Agricultural Universities provided Biology has been one of the subjects during 10+2 examination.
Stream-wise Courses Available for Admission
and Subjects to be Attempted in the Examination
Degree
Programme
For Admission
Code
No.
Subjects
which the
candidate
must have
passed
in 10+2
Examination
Subjects to
be attempted
the Entrance
Examination
Degree
Remark
STREAM – A (AGRICULTURE/BIOLOGY)
1 Agriculture PCB/PCMB/PCA/
Inter (Agri.)
with PC/Inter
(Agri.)*
PCB/PCA
2 Horticulture PCB/PCMB/PCA/
Inter (Agri.)
PCA/ Inter (Agri.)
with PC
PCB/PCA
3 Fisheries PCB/PCMB/PCA/
Inter (Agri.) with
PC
PCB/PCA
4 Forestry PCB/PCMB PCB Medical
fitness
may be
required
by some
universities
5 HomeScience PCB/PCMB/ PCA/
PCH/ Inter (Agri.)
with PC**
PCB/PCA
6 Sericulture PCB/PCMB/ PCA/
Inter (Agri.) with
PC
PCB/PCA
7 Biotechnology PCB/PCMB/
PCA/ Inter (Agri.)
with PC
PCB/PCA
STREAM– B (MATHEMATICS)
8 Agricultural Engineering PCM/PCMB PCM
9 Dairy
Technology
PCM/PCMB PCM
10 Food Science PCM/PCMB PCM
11 Agricultural
Marketing &
Co-operationa
PCMB/PCM PCM

P = PHYSICS  C = CHEMISTRY

B = BIOLOGY   M = MATHEMATICS

A = AGRICULTURE

H = HOME  SCIENCE

(i) A candidate from Stream–A can also exercise option for admission to Food Science, Agricultural Marketing & Co-operation whereas candidate from Stream-B can also opt for admission in Forestry or Biotechnology in few universities.

(ii) The efforts are on to have uniform criteria and eligibility for admissions in all the Agricultural Universities, however, some of the Universities may have different criteria/ nomenclature of degree programmes.



AIEEA – UG – 2014 Conduct of Examination

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

(i) Examination Hall will be opened to candidates 30 minutes before the commencement of examination.

(ii) Candidate who does not possess Admit Card (candidate copy), duly attested and signed will not be admitted to the Examination Hall under any circumstances.

(iii) Pre-written material in any form, viz., notes/ books/ log table, and mobile phones/i-pods, calculator or any electronic device are not allowed inside the examination hall. For verification, candidate may be searched at any  time during the examination.

(iv) The examination will start strictly on time and an announcement to this effect will be made by the Invigilator.

(v) A time signal will be given ringing a long bell at the start of the examination. To indicate that one hour is remaining, or 15 minutes are remaining, short bells will be given. A signal (long bell) will also be given at the closing time for collection of OMR sheet and question booklet when the candidate must stop writing/marking the
answers.

(vi) Candidate coming late may be allowed to enter the examination hall up to 10.30 A.M. only but no extra time will be given. Candidate coming late beyond 30 minutes, after the commencement of the examination, will not be permitted.

(vii) Fifteen minutes before the commencement of the examination, each candidate will be given OMR Answer sheet and five minutes before, the Question Booklet.

(viii) Immediately on receipt of Question Booklet, candidate should write/fill-in the required particulars on the cover page of the Question Booklet with BLACK/ BLUE BALL-POINT PEN ONLY. Candidate will not open the Question Booklet, until asked to do so by the Invigilator.

(ix) Candidate will write required particulars on OMR answer sheet with only BLACK / BLUE BALLPOINT PEN on SIDE-I and –II.

(x) No candidate shall be allowed to leave the Examination Hall until the completion of examination and related formalities. Candidate will hand over Question Booklet and OMR  Answer Sheet to the Invigilator before leaving the Examination Hall.

(xi) After completing the examination and before handing over the Question Booklet and the OMR Answer Sheet, the candidate should once again check that all the particulars required in the Question Booklet and the OMR Answer Sheet has been correctly filled-in.

(xii) The OMR Answer sheet shall be scanned and evaluated through computer and the category- wise final merit list for counselling shall be  prepared based on the reservation category information given by the candidate in OMR Answer sheet. It must be ensured by the candidate that Roll Number, Subject Stream, Series of Question Booklet, optional paper attempted and Reservation Category are correctly written in the OMR Answer Sheet and also the OMR Answer Sheet is duly signed by
the invigilator and the candidate at appropriate places, failing which it may not be considered for evaluation.

(xiii) Before leaving the Examination Hall, the candidate must ensure that OMR Answer Sheet and Question Booklet have been handed over to the invigilator on duty. In case, the candidate does not hand over the OMR Answer Sheet with Question Booklet to the invigilator and takes away the same with him/her, this shall amount
to use of unfair means and the candidate will be declared failed besides inviting further necessary action.

(xiv) Candidates are advised to bring with them their own writing material such as hard card-board (on which nothing should be written) and their own good quality black/blue ball-point pens.

(xv) Any attempt of using unfair means by the candidate during the examination process will render him/her liable to be disqualified and his/her her candidature for the examination would be forfeited.

AIEEA – UG – 2014 Admit Card

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

Details for ICAR AIEEA 2014 Admit card as follows:

  • Admit Card: The Admit Card, in duplicate, has been provided along with the Application Form.
  • The candidate must fill all the entries in the Admit Card except roll number and examination venue, retain one copy (candidate copy) and submit the other copy (office copy) along with the application. The roll number allotted to the candidate and the venue of examination would be displayed on the ICAR website at www.icar. org.in as per Application Booklet Sl. No. (offline application) / Sr. No. printed on computer generated confirm page (online application) and Date of  Birth, from where the candidate is required to note down the details and fill the same in the copy of the Admit Card (candidate copy) retained by him/her.
  • This copy of Admit Card must be duly attested by Principal of the School/College last attended or a
  • Gazetted Officer and brought to the Examination  Hall for appearing in the examination. Candidate may note that without the attestation of photo as well as signature, thumb impression of the candidate on both the copies, the admit card will be rejected. Candidate is advised to preserve this admit card (candidate copy) till completion of
  • admission process in an Agricultural University. In case of any difficulty in obtaining the roll number/ examination venue from the ICAR website, the candidate is advised to contact the Nodal Officer of the respective Examination City center, two days before the scheduled examination date.

AIEEA – UG – 2014 Updates

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

  1. ICAR National Talent Scholarship (NTS)

  2. AIEEA – UG – 2014 Introduction

  3. AIEEA – UG – 2014 Admit Card

  4. AIEEA – UG – 2014 Online Application

  5. AIEEA – UG – 2014 Conduct of Examination

  6. AIEEA UG Degree Programmes (ICAR)

ICAR National Talent Scholarship (NTS)

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

National Talent Scholarship would be available through the Agricultural University concerned, to every student admitted on ICAR seat at any Agricultural University, at
the rate of  1,000/- per month during the period of study provided the student:

(i) Joins an Agricultural University in a State outside his/her Domicile State.
(ii) Has not changed the University/subject allotted for any reason.
(iii) Has not been admitted against any vacant seat through waitlist option as per his/her request
(iv) Maintains good conduct and satisfactory academic performance (7.00 OGPA) throughout the period of study.
(v) Does not fail in any course/unit during the period of study.

AIEEA – UG – 2014 Introduction

 

Click here for Stream A Model Papers

Click here for Stream A Preparatory Course

Click here for Stream B Model Papers

Click here for Stream B Preparatory Course

 

  • Triggered primarily by professional and academic linkage with Agricultural Universities, Indian Council of Agricultural Research (ICAR), New Delhi has been able to foster a countrywide arrangement with the AUs to set aside 15% of their seats for Bachelor degree programmes to be admitted through ICAR’s All India Entrance Examination so as to reduce inbreeding, increase mobility among students, encourage national integration and infuse merit and uniform examination standards leading to improved overall quality of agricultural education.
  • Accordingly, ICAR conducts All India Entrance Examination for Admission (AIEEA) to Bachelor degree programmes in agriculture and allied subjects, other than veterinary sciences, at Agricultural  Universities on 15% of the University seats every year.
  • For NDRI, Karnal, an ICAR-Deemed-to-be-University, 100% seats are filled up through the above examination. National Talent Scholarships (NTS) are awarded based
  • on the AIEEA-UG examination to all those candidates who take admission outside their state of domicile.
  • Further, not more than 40% candidates from any one state are admitted in any agricultural university/ subject. ICAR’s 19th AIEEA-UG-2014 examination for the academic session 2014-15 will be conducted at 46 examination city centres spread all over the country, enabling participation of a large number of candidates seeking admission in Bachelor degree programmes in AUs in different disciplines. Candidates qualified for counseling will be considered for allocation of subject and the Agricultural University as per counseling procedure described hereinafter. There is no direct nomination for admission through ICAR in any Bachelor degree programme without qualifying in this examination.
© Copyright Entrance India - Engineering and Medical Entrance Exams in India | Website Maintained by Firewall Firm - IT Monteur